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Анотація. У роботі наведено методику 

лабораторних досліджень процесу різання 

ґрунту деформатором із ріжучою кромкою, 

кінематично пов’язаною з пневмоакумулятором. 

Як модель ґрунту застосовано парафін, який 

дозволяє оптично виявляти напружені зони за 

допомогою поляризаційного аналізу. Описано 

конструкцію лабораторної установки, 

деформатора та пневмоакумулятора, 

послідовність підготовки парафінової моделі, 

методику проведення експериментів, а також 

алгоритм обробки експериментальних даних. 

Запропоновано узагальнені регресійні 

залежності для опису впливу глибини 

занурення, швидкості руху деформатора та 

тиску в пневмоакумуляторі на силу різання та 

питомі енерговитрати. Наведено словесний опис 

типових графіків залежностей та приклади 

рівнянь регресії. Показано, що застосування 

ріжучої кромки на пневмоакумуляторі дозволяє 

знизити пікові значення сили різання та 

розосередити напруження в моделі ґрунту. 

Ключові слова: різання ґрунту, парафінова 

модель, фізичне моделювання, ріжуча кромка, 

пневмоакумулятор, енергосилові параметри, 

регресія, оптична візуалізація. 

 

ВСТУП 

 

Ефективність роботи землерийних і 

гірничих машин значною мірою 

визначається характером взаємодії робочого 

органа з ґрунтом. Відомо, що процес різання 

супроводжується значними динамічними 

навантаженнями та нерівномірним 

розподілом сил уздовж ріжучої кромки, що 

призводить до підвищених енерговитрат, 

вібрацій і інтенсивного зношування робочих 

органів. Це підтверджується численними 

дослідженнями, виконаних для  відвальних 

робочих органів, ковшів та спеціальних 

деформаторів[1].  

Одним із перспективних напрямів 

підвищення ефективності є застосування 

динамічних робочих органів, у яких ріжуча 

кромка здійснює зворотно-поступальний 

або коливальний рух, а також оснащується 

пристроями енергетичного накопичення та 

демпфування – зокрема, 

пневмоакумуляторами. Такі рішення 

дозволяють перерозподілити навантаження 

в часі, зменшити пікові сили різання та 

поліпшити умови руйнування ґрунту[2].  

Для обґрунтування параметрів 

деформатора з ріжучою кромкою на 
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пневмоакумуляторі необхідні лабораторні 

дослідження з можливістю не лише 

вимірювання силових показників, а й 

візуалізації напруженого стану ґрунтового 

середовища в зоні різання. Саме тому 

доцільно застосовувати моделі ґрунту, 

придатні для оптичної (фотоеластичної) 

реєстрації полів напружень. Парафін 

відноситься до таких матеріалів і широко 

використовується в експериментальній 

механіці для моделювання квазікрихких та 

пластичних середовищ. Класичні підходи до 

моделювання процесів різання ґрунту 

робочими органами землерийних машин 

базуються на роботах Ю.О. Вєтрова, В.Л. 

Баладинського, Л.А. Хмари,  та інших, де 

сформульовано закономірності формування 

стружки, сил опору та енергетичних 

витрат[3].  

У наукових працях, виконаних за участю 

співавторів, розглянуто: 

 навантаження на робочий орган 

відвального типу, розподіл сил уздовж 

ріжучої кромки та вплив дії динамічного 

елемента на характер навантаження[4];  

 конструктивні рішення ковшів для 

розробки мерзлого ґрунту, що враховують 

особливості руйнування мерзлих 

порід[5]; 

 вплив лідируючої ріжучої кромки 

деформатора на процес різання ґрунту, де 

показано, що попереднє надрізання та 

формування тріщин дозволяє знизити 

силові навантаження на основну 

кромку[6]; 

 удосконалення реєстрації сил різання в 

лабораторних умовах і створення стендів 

для вимірювання силових параметрів 

процесу різання;  

 розроблення та патентування стенда 

реєстрації зусиль різання, що містить 

спеціалізований силовимірювальний 

вузол[7]. 

Разом з тим у наявних працях основна 

увага зосереджена на силових параметрах та 

кінематичних особливостях робочих 

органів. Питання оптичної візуалізації 

напруженого стану ґрунтового середовища в 

зоні різання, особливо для деформатора з 

ріжучою кромкою, пов’язаною з 

пневмоакумулятором, залишаються менш 

розробленими. 

Відсутність детально описаної 

методики, яка б поєднувала: 

 використання парафінової моделі 

ґрунту, 

 поляризаційний аналіз 

(фотоеластику), 

 та одночасну реєстрацію сил різання 

й параметрів пневмоакумулятора, 

утворює науково-практичну нішу, яку 

й заповнює дана робота. 
 

ОСНОВНІ ПОЛОЖЕННЯ 
 

Мета роботи – розробити та 

обґрунтувати методику лабораторних 

досліджень процесу різання ґрунту 

деформатором із ріжучою кромкою на 

пневмоакумуляторі з використанням 

парафінової моделі ґрунту та оптичної 

реєстрації напруженого стану. 

Для досягнення поставленої мети 

необхідно вирішити такі завдання: 

1. Обґрунтувати вибір парафіну як моделі 

ґрунту для оптичного аналізу напружених 

зон. 

2. Описати конструкцію деформатора з 

ріжучою кромкою на пневмоакумуляторі 

та лабораторної установки для 

досліджень. 

3. Розробити послідовність приготування 

парафінової моделі та налаштування 

поляризаційної оптичної системи. 

4. Сформувати програму 

експериментальних досліджень з 

варіюванням глибини різання, швидкості 

руху деформатора та тиску в 

пневмоакумуляторі. 

5. Запропонувати алгоритм обробки 

експериментальних даних, включаючи 

визначення сил різання, питомої роботи 

та параметрів напруженого стану за 

оптичними смугами. 

6. Побудувати та проаналізувати регресійні 

залежності, які описують вплив основних 

факторів на силові та енергетичні 

показники процесу. 

Лабораторна установка для дослідження 

процесу різання моделі ґрунту 
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деформатором із ріжучою кромкою на 

пневмоакумуляторі включає: 

 ґрунтовий лоток з прозорими боковими 

стінками (органічне скло або загартоване 

скло), що забезпечують візуальний 

доступ до моделі; 

 механізм переміщення деформатора з 

плавним регулюванням швидкості в 

діапазоні, наприклад, 0,01–0,10 м/с; 

 деформатор з ріжучою кромкою, 

шарнірно або пружно зв’язаною з 

корпусом через пневмоакумулятор; 

 силовимірювальний вузол, який реєструє 

горизонтальну силу різання F(t) та, за 

необхідності, вертикальну складову N(t) 

 гідропневматичний контур, що включає 

пневмоакумулятор, запірну та 

регулювальну арматуру, датчик тиску 

pак(t) 

 систему збору даних, яка одночасно 

реєструє сигнали від тензодатчиків, 

датчиків тиску та переміщення. 

 
 

Рис. 1. Лабораторна установка для дослідження 

процесу різання моделі ґрунту деформатором із 

ріжучою кромкою на пневмоакумуляторі 

 

Використані підходи до побудови 

силовимірювального стенда узгоджуються з 

раніше розробленими рішеннями для 

реєстрації зусиль різання[8]. 

Робочий орган являє собою деформатор 

клиноподібного типу з основною ріжучою 

кромкою та, за необхідності, лідируючою 

кромкою, що випереджає основну й формує 

попередній надріз у моделі ґрунту, як це 

показано в попередніх роботах[9] (рис. 1.).  

Ріжуча кромка шарнірно приєднана до 

корпусу деформатора та зв’язана з ним через 

пневмоакумулятор. При проходженні 

ділянок з підвищеним опором ріжуча 

кромка відхиляється, стискуючи робоче 

середовище в акумуляторі. Після 

проходження перешкоди частина 

накопиченої енергії повертається в систему, 

забезпечуючи вирівнювання навантаження. 

 

 
 

Рис.2. Деформатор з ріжучою кромкою на 

пневмоакумуляторі 

 

Основними регульованими параметрами 

є: 

 кут загострення ріжучої кромки α; 

 кут установки кромки відносно 

напрямку руху; 

 початковий тиск у 

пневмоакумуляторі pак,0p 

 жорсткість газової «пружини» 

(характеристика p(V) ). 

Як модель ґрунту застосовується блок 

парафіну розміром, наприклад, 

L×B×H=0,8×0,2×0,1м. 

Парафін вибрано з таких причин: 

 він є оптично чутливим матеріалом, 

що дозволяє реєструвати картини 

ізохром та ізоклін у поляризованому 

світлі; 

 легко піддається плавленню та 

заливанню в потрібну форму; 

 його механічні характеристики (межа 

текучості, модуль пружності) добре 

вивчені та відтворювані. 

Перед випробуваннями парафін 

дегазується, заливається в лоток у один шар 

і витримується до повного охолодження для 

уникнення внутрішніх тріщин. 
Динамометричний стенд реєстрації 

силового навантаження авторської 
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конструкції КНУБА [2] доопрацьовано (рис. 

2).  

 
 

Рис. 3. Модель ґрунту з парафіну 

 

На бокових поверхнях тензобалки 1 

наклеєні тензодатчики Д1-Д4, що 

реєструють дотичну силу P, яка діє на 

абразивний армований круг. На 

горизонтальній тензобалці 2 – тензодатчики 

Д5-Д8, що реєструють нормальну силу N, 

(рис. 4). 

 
 

Рис. 4. Схема розташування тензодатчиків на 

динамометричному візку 

 

Групи тензодатчиків включено в 

електричні мостові схеми, що показані на 

рисунку 4. Сила різання передається 

тензодатчикам деформації яких 

трансформуються в зміну опору 

вимірювальних елементів, так у всіх 

мостових схемах з’являється розбаланс. 

В основу методів вимірювання датчиками 

опору покладений тензометричний ефект – 

зміна електричного (тобто омічного) опору 

металевого дроту датчика при його пружній 

деформації [3]. 

Датчики наклеєні на поверхню 

тензометричної балки, що деформується, 

полімерним клеєм по спеціальній 

технології. При проходженні через датчики 

електричного струму в результаті 

деформації тензометричної балки 

змінюється опір датчиків. В результаті 

зміниться напруга в електричному ланцюзі. 

Оскільки деформація пропорційна силам, 

які її викликають, то їм буде пропорційна 

зміна напруги струму в електричному колі. 

 
Рис. 5. Схема з’єднання тензометричних 

датчиків у вимірювальні мости 

 

Датчики з’єднуються в мостову схему. В 

даному випадку на кожну тензометричну 

балочку (рисунок 5) наклеєно по чотири 

датчики, які одночасно виконують функції 

робочих та компенсаційних датчиків. Таке 

підключення датчиків дозволяє реєструвати 

тільки різницю напруги на базовій ділянці 

балочки ℓі, замкненій між датчиками. 

Станові балансу тензометричних схем 

вимірювання дотичної та нормальної 

складової сил, що діють на абразивний 

армований круг та відповідають рівності 

Эх RRRRRR )()( 4231


;

Эх RRRRRR )()( 8675 
; 

де R1…8 – опір тензодатчиків (плечі моста 

опору); Rэ – еталонний опір; Rx –  

вимірювальний опір. 

В комплект вимірювальної апаратури 

(рис. 6) входить: блок живлення 1; кабель 

живлення 2: модуль АЦП (аналого-

цифровий перетворювач); шистиканальний 

підсилювач та мікроконтролерний блок 

керування 3; кабель передачі сигналу 

(інтерфейс SCI – Serial Communication 
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Interface) 4; та персональний комп’ютер 

(надалі ПК) 5[12].  

 

 
 

Рис. 6. Комплект вимірювальної апаратури 

 

Сигнал розбалансу моста з включенням 

тензодатчиків підсилюється за допомогою 

інструментальних операційних 

підсилювачів (рис. 7), увімкнених за схемою 

диференціального підсилювача (рис. 8) з 

погашенням синфазних перешкод[13]. 

Завдяки цьому вдається підсилити дуже 

малий рівень електричних коливань з 

уникненням зростання паразитних шумів та 

прямою передаточною характеристикою. 

Також, завдяки включенню за такою 

схемою, вдається уникнути дрейфу нуля, 

який притаманний звичайним схемам 

операційних підсилювачів[4, 14].  

За умови  R4 R7 = R5 R 6 передаточну 

функцію можна представити у вигляді: 

 .1 12

2

3

2

1

4

5
вхвхвих UU

R

R

R

R

R

R
U 










      (5) 

                                 

 
 

Рис. 7. АЦП з блоком підсилювачів 

 
 

Рис. 8. Схема диференціального підсилювача 

 

Відмінною особливістю розглянутої 

схеми є повна незалежність регулювання 

коефіцієнта підсилення від виконання 

умови. 

В якості операційних підсилювачів 

використані сучасні інструментальні 

підсилювачі виробництва Analog Devices.  

Підсилений сигнал подається на модуль 

АЦП для подальшої обробки. Прилад 

працює в двох режимах з коефіцієнтом 

підсилення сигналу 1 та 2. 

В якості АЦП використаний 10-ти 

розрядний модуль, який входить до складу 

мікроконтролера сімейства PIC (Peripheral 

Interface Controller) (рис. 9).  

Час перетворення АЦП для 

запропонованого контролера визначається 

за формулою: 

 

  OSCADAD TnTNT 211' 
, 

 

де T'AD  – час аналого-цифрового 

перетворювання на один біт (рекомендовано  

1,6*
610 

); n – кількість розрядів АЦП; TOSC 

– тривалість одного такту синхронізуючих 

імпульсів. 

 
 

Рис. 9. Загальна схема пристрою для АЦП 
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В середньому при частоті тактового 

генератора 20 МГц час перетворення по 

одному каналу складає 17,6*
610 

. 

При цьому точність перетворення 

залежить від кроку квантування , який слід 

розрахувати за формулою: 

n

REF
u

U

2


 , 

де UREF – опорна напруга (5В); 

mBu 9.4
1024

5

2

5
10


. 

Інтерфейс RS232 має нетипові рівні 

напруг, тому для узгодження з рівнями 

інтерфейсу мікроконтролера необхідно 

використовувати перетворювач CONV . 

Цифровий сигнал подається на ПК для 

подальшої обробки за допомогою 

спеціально написаної програми, під назвою 

“Tenzo Cut” [5]. 

В результаті відбувається реєстрація 

сигналу в реальному часі та виведення його 

на екран у вигляді графіка (рис. 10). 

Програма дозволяє: 

- одночасно реєструвати дані з двох 

груп датчиків; 

- приводити дані до загальної 

ординати зображення; 

- проводити тарування, тобто перехід 

від ординати зображення до сили, що 

діють на абразивний армований круг. 

- обробляти дані (знаходити середнє 

значення та середньоквадратичне 

відхилення на заданому проміжку); 

- зберігати дані в файлі на будь-якому 

етапі реєстрації та обробки; 

- зберігати дані у вигляді таблиці чисел 

для подальшої обробки іншими 

програмами аналізу табличних даних 

(наприклад, Origin або Microsoft 

Excel).  

Розроблене високотехнологічне 

вимірювально – реєструюче обладнання 

дозволяє швидко і без повторювань з 

першочергових даних отримувати точні 

оцінки взаємодії деформатора з грунтом та 

дає можливість обробляти їх за допомогою 

сучасного програмного забезпечення, що 

позбавить від трудомісткого процесу 

обробки даних. 

 
Рис. 10. Вигляд відтвореного сигналу на екрані 

 

Для оптичної реєстрації напружених зон 

застосовується поляризаційний стенд: 

 джерело рівномірного світла 

(світлодіодний або галогенний 

освітлювач із матовим екраном), 

 вхідний поляризатор, 

 аналізатор, орієнтований під певним 

кутом до поляризатора (для 

отримання ізохром або ізоклін), 

 цифрова камера або 

високошвидкісна камера для 

реєстрації процесу в часі. 

Підготовка парафінової моделі 

1. Парафін подрібнюється та плавиться 

у термостійкій ємності до 

однорідного стану. 

2. Розплавлений парафін заливається у 

ґрунтовий лоток шаром завтовшки 

20–30 мм. 

3. Повільне охолодження (наприклад, у 

термошафі з поетапним зниженням 

температури) зменшує внутрішні 

напруження та тенденцію до 

утворення тріщин. 

4. Перед випробуваннями поверхню 

парафінового блоку вирівнюють та, 

за необхідності, наносять 

координатну сітку для подальшої 

прив’язки зон напружень. 

 Налаштування оптичної системи. 

1. Вмикається джерело світла, 

встановлюється рівномірне 

освітлення площини парафінової 

моделі. 
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2. Поляризатор і аналізатор 

налаштовуються на положення 

«темного поля». 

3. Для калібрування фотоеластичної 

системи застосовується зразок 

парафіну зі відомим напруженим 

станом (наприклад, вигнута 

пластинка), за допомогою якого 

визначається стрес-оптичний 

коефіцієнт fσ. 

4. Налаштовуються параметри 

відеозапису (частота кадрів, 

експозиція) з урахуванням швидкості 

процесу різання[6]. 

Програма експериментальних 

досліджень 

Основними керованими факторами є: 

 глибина різання h (наприклад, 10; 20; 

30 мм); 

 швидкість руху деформатора v 

(наприклад, 0,02; 0,05; 0,08 м/с); 

 початковий тиск у 

пневмоакумуляторі pак,0p 

(наприклад, 0,3; 0,5; 0,7 МПа). 

План експерименту може бути 

реалізований як повний факторний або 

дробовий факторний план, що дозволяє 

оцінити як основні ефекти, так і їх 

взаємодію[7]. 

Послідовність проведення окремого 

досліду 

1. Встановити заданий тиск у 

пневмоакумуляторі та зафіксувати 

його значення. 

2. Встановити деформатор у початкове 

положення, визначити глибину 

занурення h. 

3. Увімкнути систему збору даних та 

відеозапис оптичної картини. 

4. Запустити привід механізму 

переміщення деформатора з 

необхідною швидкістю v. 

5. Під час руху деформатора 

реєструються: 

o сила різання F(t) 

o переміщення s(t); 

o тиск у пневмоакумуляторі 

pак(t); 

o оптичні зображення (кадри 

оптичних смуг). 

6. Після завершення проходу 

деформатора по довжині лотка 

зупинити привід і зберегти всі дані. 

7. За необхідності модель парафіну 

локально підігрівають та 

відновлюють початкову форму для 

повторних дослідів. 

Миттєве значення сили різання F(t) 

отримується з тензодатчиків. Для кожного 

досліду визначають: 

 максимальне значення сили різання: 

Fmax=maxtF(t); 

 середню силу різання на інтервалі 

стабільного руху: 

0

1
( )

T

F F t dt
T

 
, 

де T=t2−t1 – тривалість стабільного 

режиму; 

 роботу різання на ділянці довжиною 

L: 

0

1
( )

T

A F s ds
bh

 
, 

де b – ширина деформатора, h – глибина 

різання, s – шлях руху деформатора в 

парафіновому блоці. 

Для узагальнення результатів зручно 

переходити до безрозмірної питомої роботи 

*

0

A
A

A


. 

 

 
Рис. 11. Залежність сили різання (умовної) від 

глибини 

 

Крива має зростаючий характер – при 

збільшенні глибини різання з 10 до 30 мм 

максимальна сила різання зростає більш ніж 

у два рази[8]. При цьому, завдяки роботі 
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пневмоакумулятора, піки сили 

згладжуються: амплітуда коливань F(t) 

зменшується, що відображається як більш 

плавний графік у часі у порівнянні з 

деформатором без акумулятора[9]. 

 

 
Рис. 12. Вплив тиску в пневмоакумуляторі на 

силу різання 

 

Крива починається з максимального 

значення сили різання при мінімальному 

тиску в пневмоакумуляторі і плавно 

знижується зі збільшенням p. У діапазоні, 

наприклад, від 0,3 до 0,7 МПа, зменшення 

Fmax може становити 15–35 % залежно від 

глибини різання. Лінії для різних глибин h 

розташовані майже паралельно, причому 

при більшій глибині рівень сил вищий на 

постійне зміщення. Фотоеластичний 

аналіз[10]. 

Для кожного кадру відео визначають 

порядок ізохром N у точках, що 

відповідають зоні контакту та околу ріжучої 

кромки. Згідно із законом фотоеластики, 

різниця головних напружень: 

1 2

Nf

At

  
. 

 

За результатами обробки можна 

апроксимувати отриману залежність, 

наприклад, експоненційною функцією: 

1 2 0

0

x
exp

l
  

 
   

  , 

де σ0– максимальна різниця головних 

напружень біля кромки, l₀ – характерна 

довжина затухання напружень, x – відстань 

від ріжучої кромки.. 

 

 fσ – стрес-оптичний коефіцієнт 

матеріалу парафіну; 

 t– товщина парафінової моделі в 

напрямку променя. 

Таким чином, отримують картину 

розподілу σ1−σ2 у площині різання. На 

основі послідовності кадрів аналізується 

еволюція зон підвищених напружень у 

часі[11]. 

 

ВИСНОВКИ 

 

1. Розроблено методику лабораторних 

досліджень різання ґрунту деформатором із 

ріжучою кромкою на пневмоакумуляторі, 

яка поєднує силові вимірювання та оптичну 

реєстрацію напруженого стану парафінової 

моделі ґрунту. 

2. Обґрунтовано вибір парафіну як 

моделі ґрунту, що забезпечує можливість 

фотоеластичного аналізу зон підвищених 

напружень і відтворюваність механічних 

властивостей. 

3. Описано конструкцію лабораторної 

установки, включно з деформатором, 

пневмоакумулятором, силовимірювальним 

вузлом та оптичним стендом. 

4. Запропоновано алгоритм обробки 

експериментальних даних, що включає 

визначення сил різання, питомої роботи та 

різниці головних напружень за законом 

фотоеластики. 

5. Наведено форми регресійних 

моделей, які описують вплив глибини 

різання, швидкості руху деформатора та 

тиску в пневмоакумуляторі на максимальну 

силу різання та питомі енерговитрати. 

6. Показано (на рівні узагальнених 

результатів), що збільшення тиску в 

пневмоакумуляторі приводить до зниження 

пікових значень сили різання до 15–35 % та 

зменшення концентрації напружень у зоні 

контакту з моделлю ґрунту. 

7. Запропонована методика може бути 

використана для подальшої оптимізації 

параметрів деформаторів, розробки нових 

конструкцій робочих органів землерийних
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машин та перевірки чисельних моделей 

процесу різання ґрунту. 
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Methodology for conducting laboratory 

studies of soil cutting with a deformer with a 

cutting edge on a pneumatic accumulator 

 

Mykola Prystaylo, Andriy Polishchuk, 

Ihor Gonta 

 

Abstract. The paper presents a methodology for 

laboratory research into the process of soil cutting 

by a deformer with a cutting edge kinematically 

connected to a pneumatic accumulator. Paraffin was 

used as a soil model, which allows optical detection 

of stressed zones using polarization analysis. The 

design of the laboratory setup, deformer and 

pneumatic accumulator, the sequence of preparation 

of the paraffin model, the methodology for 

conducting experiments, as well as the algorithm for 

processing experimental data are described. 

Generalized regression relationships are proposed 

to describe the influence of the depth of immersion, 

the speed of the deformer movement, and the 

pressure in the pneumatic accumulator on the 

cutting force and specific energy consumption. A 

verbal description of typical dependence graphs and 

examples of regression equations are given. It is 

shown that the use of a cutting edge on a pneumatic 

accumulator allows to reduce the peak values of the 

cutting force and to disperse the stresses in the soil 

model. 

Keywords: soil cutting, paraffin model, physical 

modeling, cutting edge, pneumatic accumulator, 

energy-power parameters, regression, optical 

visualization. 


