Information technologies

Ensuring survivability of complex super-critical systems based on
hierarchical abstraction model and adaptive reconfiguration in post-
critical state

Dmyrto Huminnyi?

T Kyiv National University of Construction and Architecture,
Povitryanykh Sil avenue, 31, Kyiv, 03037
Tapollo.d.g@gmail.com, https://orcid.org/0000-0001-6736-0543

Received: 04.11.2025, accepted: 08.12.2025
https://doi.org/10.32347/st.2025.4.1209

Abstract. This paper presents a novel concept for
ensuring survivability of complex super-critical
systems in post-critical state based on a four-level
abstraction hierarchy and adaptive reconfiguration
mechanism. A mathematical model of the
survivability function S(t) is developed, integrating
resource states, function activities, and their weight
coefficients. An algorithm for optimal system
configuration selection during component
degradation is proposed, maximizing survivability
under minimum functionality constraints. Practical
implementation of rapid reconfiguration
mechanisms based on Post-Build Configuration
architecture for automotive ECUs in accordance
with ISO 26262 is described.

Keywords: system survivability, post-critical
state, reconfiguration, graceful degradation,
abstraction hierarchy, ISO 26262, ASIL, Lyapunov
function, super-critical systems.

INTRODUCTION
Modern cyber-physical systems,
particularly automotive electronic control

systems, are characterized by high levels of
complexity and criticalityas well as strict
functional safety requirements imposed on their
design and operation [1, 4]. The problem of
ensuring system operation after partial failures
— in the so-called post-critical state, when some
components have failed or operate with faults,
but the system must continue to perform critical
functions — is of particular relevance [5, 8, 10].

The traditional approach to functional
safety, based on ISO 26262, provides for system
transition to a Safe State upon failure de tection
[1]. However, for many applications,
particularly autonomous driving systems,

SMART TECHNOLOGIES:
Industrial and Civil Engineering, Issue 4(17), 2025, 75-82

Dmytro Humennyi

Ph.D., Engineering Manager
at N-iX, Associate Professor
of the Department of
Cybersecurity and Computer
Engineering

complete system shutdown may be more
dangerous than continued operation with limited
functionality. This requires new approaches to
designing systems capable of Graceful
Degradation and rapid reconfiguration.

The purpose of this research is to develop
theoretical foundations and practical methods
for ensuring survivability of complex systems in
post-critical state based on a hierarchical
abstraction model that enables rapid system
reconfiguration
while maintaining
functionality.

maximum possible

MATHEMATICAL MODEL OF SYSTEM
SURVIVABILITY

2.1. Resource State Model
Let the system consist of a set of resources R
= {r4, I, ..., r[]}, where each resource can be in
one of three states: H (Healthy), D (Degraded),
F (Failed). The state of the i-th resource at time
t is denoted as x;(t) € {H, D, F}.

For each resource, an operability coefficient
pi(t) € [0, 1] is introduced, characterizing its
ability to perform functions:

75

https://orcid.org/0000-0001-6736-0543
https://doi.org/10.32347/st.2025.4.1209

Information technologies

pi(t) = poi - exp(-A; - t_degraded), (1)

where pl; is the initial operability coefficient
(1.0 for H, 0.3-0.7 for D, 0 for F), A; is the
degradation intensity, t degraded is the time
spent in degraded state. The dynamics of
transitions between states is described by a
Markov process with intensity matrix Q [5, 10].

2.2. System Survivability Function

The system implements a set of functions F =
{F[1, F[1, ..., F1}, each having a weight w; [
[0, 1] reflecting its importance for mission
execution. The system survivability function is
defined as:

S@) = 2w fi(pL, .., pL) - (1), (2)

where 9i(t) [0 {0, 1} is the activation indicator
for function F; (determined by current
configuration), fj(p) is the dependency function
of the j-th function on resource operability
coefficients:

Jitp) = TEUR; pi - TN Oy max(pLl, p_backup)
3)

where R; is the set of required resources for

function Fj, O;j is the set of optional (redundant)
resources, p backup is the backup channel
operability coefficient.

2.3. Mission Objective Function

The level of mission execution by the system
is determined by the objective function:

D(t) =2 wi - it), where ¢; €{0, 1}, 4)

The system transitions between operating modes
(NOMINAL — DEGRADED — LIMP_ HOME
— SAFE_STOP) depending on the ratio of ®(t)
to threshold values ® threshold(mode). The
survivability management task consists of
maximizing S(t) subject to constraints @(t)
> ® min(mode).

HIERARCHICAL ABSTRACTION MODEL
FOR RECONFIGURATION

To enable rapid system reconfiguration
while maintaining its integrity, a four-level
abstraction hierarchy is proposed (Fig. 1), where
each level encapsulates implementation details
of lower levels and provides interfaces for
management by higher levels.

Abstraction Hierarchy for System Survivability

MISSION LAYER

Objective function: ®(f) = Fw;- g(t), where g, € {0, 1}
Modes: NOMINAL = DEGRADED = LIMP_HOME = SAFE_STOP

Transition criterion: ®(t) < Guresnota(Mode)

!

FUNCTION LAYER

Fi: ADAS

ASILB | wa=0.7

Fi: Autopilot
ASILD | wi=1.0

ASIL C | wr=0.9

‘ Fi: Stability

!

SERVICE LAYER (BSW/RTE) |

oM | | 0s

aam ”

!

ECU:
wlt) @ D

s = 0.43

ECU:
wilt) € H
=095

RESOURCE LAYER (Hardware) I

Sensorss..
14 active
ps=07%

Resource States:
H - Healthy

D b - Degraded

PE(0.1] — resource operability coeffickent

Survivability Function:

S(t) = Fw; - fi(p1. .. o) B(1)

8i) € 40, 1} — function F, activation state

- e

Fig. 1. Abstraction hierarchy for ensuring system survivability

76

SMART TECHNOLOGIES:
Industrial and Civil Engineering, Issue 4(17), 2025, 75-82

Information technologies

3.1. Mission Layer

The highest abstraction level defines global
system objectives and permissible degradation
modes. At this level, decisions are made about
transitions between NOMINAL, DEGRADED,
LIMP HOME, and SAFE_STOP modes based
on the objective function value ®(t). Transition
criterion: @(t) < ®_threshold(current mode) —
transition to lower mode.

3.2. Function Layer

This level defines the set of system
functions and their states (ACTIVE,
STANDBY, DEGRADED, DISABLED). Each
function is characterized by weight wj, ASIL
level, and resource dependencies.
Reconfiguration at this level consists of
changing the set of active functions Ji(t) to
maximize S(t) for a given mission mode.

3.3. Service Layer

The Basic Software (BSW) and
Runtime Environment (RTE) level with
multiple configuration support. Implemented
through the Post-Build Configuration

mechanism, allowing switching of COM
routing tables, OS settings, WdgM parameters
without recompilation. Each service supports

several predefined configurations (Config
A/B/C).

3.4. Resource Layer

The lowest abstraction level,

responsible for monitoring the state of physical
components (ECU, sensors, actuators,
networks) and providing information about
operability coefficients pi(t) to higher levels.
Feedback from this level is the basis for
reconfiguration decisions.

ADAPTIVE RECONFIGURATION
MECHANISM

4.1. Degradation State Machine

The system operates as a finite state
machine with four main states and a nested
reconfiguration process in the DEGRADED
state (Fig. 2) [6, 7]. Transitions between states
are determined by the survivability function
value S(t) and thresholds S nom, S deg,
S min.

System Dﬁgradation State Machine in Post-Critical Mode

recovery com

b i

NOMINAL DEGRADED

fafure detectpd

S(t) = Spom Steg = S(t) < Spom

O(t) = Omax Reconfig active

rdconfig faildd aritical

LIMP_HOME SAFE_STOP

Spmin = S(t) < Sgeq S(t) < Smin

Minimal function Emergency

Reconfiguration Process (DEGRADED state)

ANALYZE

APPLY

! I
! 1
! I
: 1
I

! 1
! 1
I 1
: I
1

. @ '
! I
: 1
fic I

: v Configeffitch T !
1

: olt), 6(t) [0K] [
H SELECT_CONFIG VERIFY -—-»@ i
! 1
! I
: I

Fig. 2. System degradation state machine in post-critical mode

SMART TECHNOLOGIES:

Industrial and Civil Engineering, Issue 4(17), 2025, 75-82

77

Information technologies

A key feature of the model is the presence of
reverse transitions (recovery), allowing the
system to return to a higher functionality level
after successful reconfiguration or resource
recovery. The reconfiguration process in the
DEGRADED state includes stages: ANALYZE
— SELECT CONFIG — APPLY — VERIFY.
Fig. 2. System degradation state machine in
post-critical mode.

4.2. Optimal Configuration Selection
Algorithm

Upon detecting system degradation, an
optimal configuration search algorithm is
launched (Fig. 3), solving the optimization
problem:

cfg* = argmax S(cfg | pll, ..., pl1), (5)

subject to: @(cfg) > ®_min(current_mode)

Survivability Computation and Optimization Algorithm

Get resource states

x(t)E{H. D, F}

!

Compute coefficients p;(t)

Pi= Pui - eXpl{=A; - taegraded)

'

Compute survivability function

S(t)= 2w fi{p) - 6
]

Function f(p):
fi= Mo
iR
[max(ps, Phaciee)

kEQ,

R; — required resources

0; — optional resources

l

Continue

-

SAFE_STOP

®: = Qamergency

1
®

monitaring

I
Yes :
|
|
Find optimal configuration :
. |
cfg” =argmaxS(cfg | p)]
|
|
|
|
|
]
|
Slefg”) = Spin :
I
& feasible? :
]
|
|

Apply cfg”

G =Glcfg")

Fig. 3. Survivability computation and optimization algorithm

78

SMART TECHNOLOGIES:
Industrial and Civil Engineering, Issue 4(17), 2025, 75-82

Information technologies

4.3. Reconfiguration Sequence

The reconfiguration process upon failure
detection includes interaction of WdgM,
SafetyManager, ConfigManager, RTE, BSW,
and DEM components (Fig. 4). The sequence
consists of five phases: Detection (failure
detection), Analysis (computation of S(t) and p;),
Selection (optimal configuration selection),
Apply (applying new configuration), Verify
(result verification).

5.1. Reconfiguration-Enabled
Architecture

Practical implementation of the
hierarchical survivability model is based on
Post-Build Configuration architecture, allowing
storage of multiple configurations in NVM and
switching between them at runtime without
recompilation (Fig. 5) [1, 2].

The SurvivabilityManager component
implements upper levels of the abstraction

Reconfiguration Sequence Upon Failure Detection

WdgM SafetyManager ConfigManager

RTE BSW DEM

'
|
1 1; SupervisionFailed(SE_id, type
Detection

2: RepartErmor(DTC, status)

Calculate
(), 5it)

o= 0 9,

Analysis

3: RequestConfiglS(t), constraints)

Optimize

1
i
1
i
1
i
i
I
i
I
i
1
i
T
i
1
i
1
i
i
i
i
I
1
i
i
i
1
i
I
i
|
1
1
i
i
1
i
1
i
1
i
i
i
I
I
i
1
i
I
i

i
I
i
1
i
1

/-\ max S{configh
— 5.1, rescurces
i
Selection]
| & ConfigSelectedicly id, ©
I
[——————
I
i
i
|
i]
) 3: SwitchConfiggrationictg id)
i
i
i
i
i
|
! ! '
Apply i | |
' | 1
i i i
i i 1
1 i i
i
1 i i
i i i
t | i
|
| i
i
] } B: tu"llq,ﬁpu!\udl}'.dlh:
1
i | i
i i P
1 i i
Verify | i o
' 1 H 9: LogReconfiguration(chgid, Soaw, Bren!
i i 1
|

i
T
i
i

Salection Criterion:

oy " = argmax 5lcfy)

6 ReconfigBswi)

]
]
i\l Update
1
1
i
1

1: BSW _Ready

Fig. 4. Reconfiguration sequence upon failure detection

PRACTICAL IMPLEMENTATION IN
AUTOMOTIVE SYSTEMS

SMART TECHNOLOGIES:

Industrial and Civil Engineering, Issue 4(17), 2025, 75-82

hierarchy and makes reconfiguration decisions
based on WdgM (monitoring) data and resource
state from HAL. ConfigurationManager is
responsible for applying the selected

79

Information technologies

Component Architecture with Reconfiguration Support

Application Layer (SWC)

COMponents sCOMmponents
SWC _[ntical SWC _i\l]ﬂ.‘:

«COMponents
SWC_Comfort

=optionals
SWC_Autopilot wamponents

Survivability

Config A only] Manager

AL Ll |

RTE (Runtime Environment) — Post-Build Configurable

-———

Basic Software (BSW)

Safe0sS WdgM BswM

L8

oM E2E DEM

ConfigurationManager (Post-Build)

Hardware Abstraction / MCAL

————— e

MCu MPU HW WDG

CAN ADCIPWM NVM

Config are. P
=5(t)

Fig. 5. Component architecture with reconfiguration support

configuration through BswM, which controls
BSW module operating modes.

5.2. Survivability System Class Model

The software model of the survivability
system (Fig. 6) includes classes:

80

SurvivabilityManager (survivability
management), Resource (resource model with p
coefficient), SystemFunction (function with
weight and dependencies), Configuration
(system configuration), ConfigSelector (optimal
configuration selection), and
LyapunovAnalyzer (stability analysis).

SMART TECHNOLOGIES:

Industrial and Civil Engineering, Issue 4(17), 2025, 75-82

Information technologies

Class Diagram: System Survivability Model

SurvivabilityManager

- currentMoede: SystemMode

-5 _thresholds: float[4]

+ calculateSurvivability(): float

+ triggerReconfiguration()

Resource

- id: int
- state: ResourceState
- rho: float

- lambda: float

uses

SystemFunction

current

+ updateState()

wenums

ResourceState

HEALTHY

DEGRADED

- id: int

- weight: float

- active: bool

. requiredRes: Resource(]

- optionalRes: Resourcel]

Configuration

- id: int
- activeFunctions: bool(]
- 5_expected: float

- Phi_level: float

+ computeF(rhol]}: float

+ applyl)

analyzes

ConfigSelector

LyapunovAnalyzer

- configs: Configuratien(]

- 5_min: float

- P: Matrix

- Q: Matrix

+ selectOptimalirhal])

: Configuration

FAILED

+ checkStability(): bool

«enum:»

SystemMode

MNOMINAL

DEGRADED

LIMP_HOME

SAFE_STOP

Fig. 6. Survivability system class diagram
5.3. Rapid Reconfiguration Mechanisms

To ensure minimum reconfiguration time,
the following mechanisms are used:

— Post-Build Selectable Configuration —
pre-compiled configurations stored in NVM
and activated through BswM;

— Hot Standby Functions — backup
functions maintained in ready state for instant
activation;

— Partition Restart — ability to restart
individual OS-Applications without affecting
critical functions;

— Pre-computed Configurations — table
of optimal configurations for typical
degradation scenarios computed offline.

STABILITY AND CONVERGENCE
ANALYSIS

SMART TECHNOLOGIES:

Industrial and Civil Engineering, Issue 4(17), 2025, 75-82

To prove system stability in post-critical
state, the Lyapunov function V(x) = xTPx is
used, where x is the deviation vector from the
target state [4]. The system is asymptotically
stable if there exists a configuration cfg* for
which the derivative dV/dt < 0. The condition
for existence of such a configuration:

Fefg: S(cfg | p) =S_min N D(cfg) >
@ min(mode), (6)

If the condition is not satisfied for any
configuration, the system transitions to
SAFE STOP state with functionality
® emergency, guaranteeing minimum safety.

CONCLUSIONS

This paper presents a comprehensive
approach to ensuring survivability of complex

81

Information technologies

super-critical systems in post-critical state.
Main results:

I. A mathematical model of system
survivability S(t) = X; w; - fi(p) - 6; has been
developed, integrating resource states,
functions, and their weight -coefficients,
allowing quantitative assessment of system
ability to execute its mission.

2. A four-level abstraction hierarchy
(Mission — Function — Service — Resource)
is proposed, enabling decomposition of the
reconfiguration task and encapsulation of
implementation details.

3. An algorithm for optimal configuration
selection cfg* = argmax S(cfg) subject to
minimum functionality constraints ®(cfg) >
® min has been developed.

4. Practical implementation based on Post-
Build Configuration architecture for
automotive ECUs with rapid configuration
switching support is described.

5. System stability conditions in post-
critical state based on Lyapunov functions are
proven, guaranteeing convergence to a stable
mode or safe transition to SAFE_STOP.

REFERENCES

1. ISO 26262:2018. Road vehicles — Functional
safety. International = Organization for
Standardization.

2. AUTOSAR. Specification of Basic Software
Mode Manager. Release R22-11.

3. Humennyi D., Humennyi O. (2023).
Established Definitions of Super-Critical
Operational Modes // Pidvodni Tehnologii. —
2023. — Vol. 13(1).

4. Leveson, N.G. (2016). Engineering a Safer
World: Systems Thinking Applied to Safety;
MIT Press: Cambridge, MA, USA, 2016.

5. A. Avizienis, J. . -C. Laprie, B. Randell and C.
Landwehr. (2004). Basic concepts and
taxonomy of dependable and secure computing,"
in IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11-33, Jan.-March
2004, doi: 10.1109/TDSC.2004.2.

6. Knight, John C. (2002). Safety critical systems:
challenges and directions." Proceedings of the
24th international conference on software
engineering. 2002.

7. Shelton, Charles P., and Philip Koopman.
(2004). Improving system dependability with
functional alternatives." International

82

Conference on Dependable Systems and
Networks, 2004. IEEE.

8. Ellison, R. J., Fisher, D. A., Linger, R. C.,
Lipson, H. F., & Longstaff, T. (1997).
Survivable network systems: An emerging
discipline (No. CMUSEI97TRO013).

9. W. Heimerdinger, and C. Weinstock. (1992). A
Conceptual Framework for System Fault
Tolerance," Carnegie Mellon University,
Software Engineering Institute's Digital Library.
Software Engineering Institute, Technical
Report CMU/SEI-92-TR-033, 1-Feb-1992
[Online]. Available:
https://www.sei.cmu.edu/library/a-conceptual-
framework-for-system-fault-tolerance/.
[Accessed: 22-Dec-2025].

10.Laprie, Jean-Claude. (1992). Dependability:
Basic concepts and terminology."
Dependability: Basic Concepts and
Terminology: In English, French, German,
Italian and Japanese, Vienna: Springer Vienna,
3-245.

3ale3neyeHHs KMBYYOCTi CKJIAIHUX CyNep-
KPUTHYHUX CHCTEM Ha OCHOBI MojeJIi
iepapxiunoi adcTpakiii Ta aTanTHBHOL
pexoHirypauii y mic1sKpuTHYHOMY CTaHi

Jmumpo I'ymennuir!

'Kuiscokuii nayionansnuii ynisepcumem
0yOieHuymea i apximexmypu

AHoTanisi. Y pnaHiii poOOTI MpencTaBICHO
HOBUH KOHLENT 3a0e3MeYeHHs] KHUBYYOCTI
CKJIQJTHUX CYNEePKPUTUIHHUX CHCTEM y
MOCTKPUTUYHOMY CTaHi HAa OCHOBI YOTHPUPiIBHEBOL
iepapxii aOcTpakiii Ta MeXaHi3My aJIalTHBHOI
pexoHdiryparii. Po3pobieno MareMaTnaHy MOZAEIH
¢yHkuii kuBydocTi S(t), O iHTErpye craHH
pecypciB, aKTHBHOCTI (yHKIIA Ta IX Barosi
koe(iuieHTH. 3amponoHOBAHO AITOPUTM BUOOPY
ONTUMANIBHOI KOH(]Irypamii cuUcTeMH TMix dYac
Jerpajaamii KOMIIOHEHTIB, II0 MakKCUMI3ye
JKUBYYICTh 32 YMOB MiHIMalTbHUX (DYHKITIOHATHHHUX
oOmexeHb. OmNHMcaHoO MNPakTHYHY peaji3aliio
MeXaHi3MIB MBUIKOI peKoHQIrypamii Ha OCHOBI
apxitektypu Post-Build Configuration s
asroMoOUTEHMX EBK Binnosiano mo ISO 26262.

KawuoBi ciaoBa: KHBYYICTh CHCTEMH,
MOCTKPUTUYHUN CTaH, peKoH(Iiryparis, TuiaBHa
nerpanartis, iepapxist abcrpakiii, [SO 26262, ASIL,
¢ynkuis JsmyHoBa, CyNepKpUTHYHI CUCTEMHU.

SMART TECHNOLOGIES:

Industrial and Civil Engineering, Issue 4(17), 2025, 75-82

