
Information technologies

66 SMART TECHNOLOGIES:
Industrial and Civil Engineering, Issue 4(17), 2025, 66-74

Comparative analysis of contour detection algorithms in images in
computer vision tasks. Part I

Dmytro Mishchuk1, Yevhen Mishchuk2, Dmytro Korzhevin3

1,2 Kyiv National University of Construction and Architecture,
31 Air Force Avenue, Kyiv, 03037, Ukraine,

3Cisco Talos Intelligence,
8135 Maple Lawn Blvd, Fulton, MD 20759, USA

1mischuk.do@knuba.edu.ua, https://orcid.org/0000-0002-8263-9400,
2mischuk.ieo@knuba.edu.ua, https://orcid.org/0000-0002-1888-3687,

3dkorzhev@cisco.com, https://orcid.org/0009-0002-1916-5019

Received: 12.11.2025, accepted: 08.12.2025
https://doi.org/10.32347/st.2025.4.1208

Abstract. Identifying contours in images is a

fundamental task in computer vision, underpinning

many modern technologies. Their accurate

detection enables the solution of a wide range of

practical problems, including segmentation and

object recognition, 3D reconstruction, medical

diagnostics, and autonomous control of systems.

In the field of computer vision, significant

progress has been made in developing image

processing algorithms; however, many unsolved

problems remain. The tasks of improving the speed

of solving existing algorithms and developing

algorithms for working with limited computational

memory resources remain relevant.

This paper presents a description and analysis of

several well-known image processing algorithms

for detecting contours in an image.

It is known that an image in computer systems is

a set of pixels of a given brightness and color. Such

a representation can be represented in the form of

matrices, where each of its elements is a pixel, and

the position is the coordinates of each pixel. Thus,

image processing from the position of mathematics

is working with matrices and sets. The quality of the

processing algorithm will depend on the chosen

method of working with matrices.

Neural networks, although not a new approach,

have gained widespread popularity relatively

recently, mainly due to the development of

convolutional neural networks, which specialize in

processing photo and video data. In addition, the use

of recurrent neural networks allows you to search

for the optimal architecture for neural network

systems. Different models have been adapted to

specific constraints, such as the size of the model

itself, computational resources, or ensuring the

required accuracy.

Alternative approaches to neural networks are

algorithms based on detectors and descriptors. In

essence, these are algorithms that allow you to

compare images based on some basic features. For

example, to understand that two different photos

show the same object, the computer does not

compare every pixel, but looks for "special" places

and describes them mathematically, which

significantly speeds up image processing, but can

lead to errors.

Keywords: Roberts operator, Prewitt operator,

Laplassian, erosion, blurring, morphological

processes, dilation, normalization.

INTRODUCTION

Contours are boundaries between objects or

areas with different visual characteristics.

Dmytro Mishchuk

Ph.D. ,department of
construction machinery

Yevhen Mishchuk

Ph.D., department of
machinery and equipment of
technological processes

Dmytro Korzhevin
Cisco

https://orcid.org/0000-0002-8263-9400
https://orcid.org/0000-0002-1888-3687
https://orcid.org/0009-0002-1916-5019
https://doi.org/10.32347/

Information technologies

SMART TECHNOLOGIES: 67
Industrial and Civil Engineering, Issue 4(17), 2025, 66-74

Today visual information processing is

becoming increasingly automated; and contour

detection methods are widely used in various

industries. For example, in medicine, such

image processing algorithms are used to

analyze medical images (X-rays, MRI, CT

scans), which allows doctors to diagnose

diseases faster and more accurately. In the field

of autonomous vehicles, contours help

guidance systems detect obstacles, pedestrians,

and other objects on the road. In remote sensing

of the Earth, contour detection is used to

process satellite images, which is important for

monitoring environmental changes, urban

planning, and resource management.

Thus, the development and improvement of

contour detection methods is a relevant area of

research, since the quality and reliability of

many automated systems depend on their

effectiveness.

PURPOSE AND OBJECTIVES

The main goal of this work is to analyze and

compare classical and modern methods of

contour detection.

The objectives of the work were to identify

the advantages and disadvantages of each

approach and assess the applicability of the

methods depending on the type of images and

tasks.

PRESENTATION OF THE MAIN

MATERIAL

Image edge detection methods can be

classified according to the approach used to

detect the boundaries between objects. The

main known detection categories include:

1. Gradient methods - These methods are based

on the analysis of the intensity changes of

pixels in an image. Contours are defined as

areas with a high brightness gradient. The

most common algorithms include the Sobel,

Prewitt, Roberts operators, and the Canny

operator, which combines noise filtering,

gradient calculation, and hysteresis

thresholding to obtain thin and continuous

contours.

2. Laplacian-based methods. The Laplacian is

a second-order differential operator that

detects areas of rapid intensity change. This

method is sensitive to noise, so it is often

used in conjunction with pre-filtering (e.g.,

Gaussian blur). Laplacian-based methods

allow for the detection of contours of

varying thickness, but require additional

processing to eliminate false detections.

3. Methods based on morphological analysis.

Morphological processes (erosion, dilation,

opening, closing) are used to extract

contours by processing binary or gray

images. These methods are especially

effective for processing images with clear

boundaries between objects, for example, in

the tasks of texture segmentation or analysis

of microscopic images.

4. Methods based on active contours (Snakes,

Level Set) - these are methods that use

deformed curves that adapt to the

boundaries of objects under the influence of

internal and external forces. Active contour

methods allow you to obtain smooth and

continuous contours, but require an initial

approximation and are computationally

more complex compared to gradient

methods.

5. Machine learning and deep learning methods

- these are modern approaches to edge

detection that are built on the basis of fuzzy

neural network logic, in particular

convolutional neural networks (CNN) and

U-Net-type architectures. These methods

allow you to automatically learn to detect

edges based on large data sets, which

significantly increases accuracy and noise

resistance. Examples: HED (Holistically-

Nested Edge Detection) algorithms, RCF

(Rich Convolutional Features).

The Roberts operator is one of the simplest

methods for determining contours. It calculates

the gradient using two 2×2 matrices

(convolution kernels) that approximate

derivatives along the diagonals:













10

01
xG ;













01

10
yG .

(1)

Information technologies

68 SMART TECHNOLOGIES:
Industrial and Civil Engineering, Issue 4(17), 2025, 66-74

Algorithm for applying the Roberts

operator. Suppose that the input image is

represented as a two-dimensional matrix of

pixels I with size M × N, where each pixel has

an intensity from 0 to 255. At the output, this

algorithm returns a new image matrix G with

selected contours of size M×N.

To implement this algorithm, you first need

to create an empty matrix G with size M×N and

specify Roberts kernels – matrices of size 2×2

(1). To process the original image, it is

necessary for each pixel I(i, j) (where

1<i<(M−1), 1<j<(N−1)) calculate the gradient

value using the next formula:

gx = I(i, j)⋅Gx(0, 0)+ I(i, j+1)⋅Gx(0, 1)+

+ I(i+1, j)⋅Gx(1, 0)+ I(i+1, j+1)⋅Gx(1, 1)
(2)

gy = I(i, j)⋅Gy(0, 0)+ I(i, j+1)⋅Gy(0, 1)+

+ I(i+1, j)⋅Gy(1, 0)+ I(i+1, j+1)⋅Gy(1, 1)
(3)

Next, the gradient modulus is calculated,

which will reflect the pixel value in the new

image:

G(i,j)=
22
yx gg  (4)

To visualize the gradient values, they need to

be normalized. To do this, you need to find the

minimum Gmin and maximum Gmax values in the

gradient matrix and give each value Gi,j to the

range [0, 255] according to the following

formula:















minmax

min),(
),(255

GG

GG
roundG

ji
jinorm , (5)

where),(jinormG - normalized pixel brightness

value.

If),(jinormG < 0 then),(jinormG = 0, if

),(jinormG > 255 then),(jinormG = 255, if Gmin =

Gmax then),(jinormG = 0.

The advantages of this method of image

processing are its simplicity of implementation,

but for large image sizes it requires a large

number of calculations and sorting of the

gradient array. This method is also sensitive to

noise and can detect contours only along

diagonals, which can lead to missing some

boundaries. It is mainly used for fast processing

of small images or as a preliminary stage in

more complex algorithms.

The Prewitt operator uses two kernel

matrices of size 3×3 to calculate the horizontal

gradient (Gx) and vertical (Gy):

























101

101

101

xG ;















 



111

000

111

yG .

(6)

Algorithm for applying the Prewitt

operator. For the image I in size M×N an

empty matrix G created with size M×N. Next

needs to specify the Prewitt kernels (6).

For each pixel I(i, j), where 1 < i < M−1 and 1

< j < N−1, need to calculate the gradient values:
gx=I(i-1, j-1)⋅Gx(0, 0)+I(i−1,j)⋅Gx(0, 1)+I(i−1, j+1)×

×Gx(0, 2) + I(i, j−1)⋅Gx(1, 0)+ I(i, j)⋅Gx(1, 1) +

+I(i, j+1)⋅Gx(1, 2) + I(i+1, j-1)⋅Gx(2, 0) +

+I(i+1, j)⋅Gx(2, 1) + I(i+1, j+1)⋅Gx(2, 2);

(7)

gy= I(i-1, j-1)⋅Gy(0, 0)+I(i-1, j)⋅Gy(0, 1)+I(i-1, j+1) ×

×Gy(0, 2) + I(i, j-1)⋅Gy(1, 0)+I(i, j)⋅Gy(1, 1)+

+I(i-1, j+1)⋅Gy(1, 2)+I(i+1, j-1)⋅Gy(2, 0)+

+I(i+1, j)⋅Gy(2, 1)+ I(i+1, j+1)⋅Gy(2, 2).

(8)

This algorithm ignores the extreme rows and

columns, since the kernel is 3×3 and does not

fit on the edges. Next, the gradient modulus is

determined using a similar formula (4), and

normalization is performed.

This algorithm detects contours better than

the Roberts algorithm, but is also sensitive to

noise - small objects or individual pixels. It is

often used for processing medium-quality

images, where speed and simplicity are

important.

The Sobel operator is the most common of

these three. It also uses two 3×3 cores, but with

additional weighting for the center row/column,

which reduces sensitivity to noise:

























101

202

101

xG ; (9)

Information technologies

SMART TECHNOLOGIES: 69
Industrial and Civil Engineering, Issue 4(17), 2025, 66-74















 



121

000

121

yG .

The gradient for the Sobel operator is

calculated similarly to that for the Prewitt

operator. This method can suppress noise better

than Prewitt and Roberts, which allows you to

more accurately determine the direction of the

contour. The disadvantages of this method of

contour determination are that this algorithm

can produce thick contours and requires

additional processing for fine boundary

selection. The Sobel operator using in computer

vision systems, medical imaging, and satellite

image processing.

The Laplacian calculates the change in the

intensity of the image brightness at each point,

indicating the boundaries of objects where the

brightness changes sharply and is defined as the

sum of the second derivatives in the coordinates

x and y:

2

2

2

2
2

y

I

x

I









 , (10)

where: I — pixel intensity.

Brightness function I depends on the

coordinates of the pixel in the image – x and y,

that is I(x, y) – is the brightness of the pixel at

position (x, y). The derivative shows how

quickly the brightness changes when moving

from one pixel to the next. Since it is not

possible to calculate the derivative directly in

the image, the following approximation is used:

- the first derivative is approximated as the

difference in brightness of neighboring pixels:

),(),1(yxyx II
x

І





 ; (11)

- second derivative – difference of first

derivatives:

).(

)(

),1(),(

),(),1(2

2

yxyx

yxyx

II

II
x

І












 (12)

In practice, for discrete images, instead of

searching for gradients, Laplacian

approximation is used using a convolution

kernel, for example:



















111

181

111

K . (13)

Algorithm for applying the Laplacian. At

the beginning of processing, the original image

must be converted to grayscale (if it is color)

and transformed into a matrix of pixels I with

normalization to values from the range [0, 1] or

[0, 255]. Next, a new matrix of the same size is

created, where each pixel will be the result of

applying the Laplacian to the corresponding

pixel of the original image. To do this, a kernel

(kernel convolution) is applied to each pixel of

the original image (except for the boundaries)

so that the center of the kernel coincides with

the current pixel. Next, the new pixel value is

calculated as the sum of the products of the

image pixel values and the corresponding

kernel values:

new_pixel(x,y) = I(x-1,y-1)⋅K[0,0]+

+I(x-1,y)⋅K[0,1]+I(x-1,y+1)⋅K[0,2]+

+I(x,y-1)⋅K[1,0]+I(x,y)⋅K[1,1]+

+I(x,y+1)⋅K[1,2]+I(x+1,y-1)⋅K[2,0]+

+ I(x+1,y)*K[2,1] + I(x+1,y+1)*K[2,2].

(14)

Pixels at the image borders can be ignored

(left black), reflected, or border extended.

After convolution with the Laplacian kernel,

pixel values can be both positive and negative,

so normalization to the range [0, 255] is applied

for visualization according to the algorithm

using the formula (5).

Sometimes thresholding is also applied after

normalization to retain only the strongest

contours:

if abs(normalized_pixel) > threshold:

 edge_pixel = 255

else:

 edge_pixel = 0

Information technologies

70 SMART TECHNOLOGIES:
Industrial and Civil Engineering, Issue 4(17), 2025, 66-74

This approach allows for contour detection

because the Laplacian responds to abrupt

changes in intensity.

The Kenny algorithm is a multi-stage

algorithm that combines high accuracy in

detecting significant edges with minimizing

false positives. It is one of the most effective

methods for detecting contours in computer

vision. The Kenny algorithm is not limited to

calculating the smoothed gradient of the image.

Only the points of maximum gradient of the

image remain in the contour, and the maxima

near the boundary are removed. His method

also uses information about the direction of

change of the image contour boundary in order

to remove noise near the boundary and not

break the contour near local gradient maxima.

Further, weak boundaries are removed using

two thresholding processes. Fragments of the

contour boundaries are processed as a single

whole fragment. If the gradient value anywhere

on the processed fragment exceeds the upper

threshold, then such a fragment remains valid

even in those places where the gradient value is

lower than this threshold value, until the

gradient value becomes lower than the lower

threshold. If there is no point with a value

greater than the upper threshold on the entire

fragment, then such a fragment is deleted. This

approach allows you to reduce the number of

breaks in the original boundaries. The use of

noise reduction in the Kenny algorithm

increases the stability of the results, but

increases the computational costs and can lead

to distortion and loss of clarity of boundaries.

For example, this algorithm rounds the corners

of objects and destroys the boundaries at the

connection points.

The algorithm for applying the Kenny

method consists of sequentially executing the

following image processing cycles.

1. Gaussian smoothing, which is essentially

a blurring of the original image to remove noise

(small scattered pixels). A two-dimensional

Gaussian filter is used - a matrix (kernel) that

processes the pixels of the original image. Each

pixel of the kernel is a weighted average of its

neighbors, and the weights are determined by

the Gaussian function:

2

22

2
2),(

2

1 







yx

yx eG , (15)

where  – standard deviation, which

determines the degree of “blur” (the larger this

value, the stronger the blur and the better the

noise suppression); x, y – pixel coordinates

relative to the center of the filter kernel.

For a blur kernel of size 3×3 and = 1 were

define the components of the matrix:

159,071,2
114,32

1 2

22

12

00

2)0,0(


 




G

262,071,2
114,32

1 2

22

12

01

2

)0,1()1,0()1,0()0,1(













 GGGG

432,071,2
114,32

1 2

22

12

11

2

)1,1()1,1()1,1()1,1(













 GGGG

Then the blur filter kernel will be like this:



















432,0262,0432,0

262,0159,0262,0

432,0262,0432,0

g . (16)

In practical applications, a simplified

Gaussian formula is often used for each pixel:

2

22

2
),(








yx

yx eGS . (17)

In this case, the resulting kernel matrix is

normalized. To do this, the sum of all elements

of this matrix is determined, and each of its

elements is divided by this sum. This allows

you not change the brightness of the original

image. To calculate the new brightness for a

specific pixel, you need to superimpose the

convolution kernel on the original image. To do

this, superimpose the center of the convolution

matrix on the selected pixel (usually starting

from the upper left corner). Next, the brightness

value of each neighboring pixel must be

Information technologies

SMART TECHNOLOGIES: 71
Industrial and Civil Engineering, Issue 4(17), 2025, 66-74

multiplied by the corresponding coefficient of

the kernel matrix, which is "underneath it". The

resulting values added, and the result will be the

new (smoothed) pixel value:

 
 

 
1

1

1

1
),(),(

i j
jijyixnew gIp , (18)

where newp is pixel intensity value of the new

image;),(jyixI  the pixel intensity of the

original image;),(jig is blur kernel value.

The resulting total value is written to a new

image array at the same location as the central

kernel pixel. Then the kernel matrix is shifted

one pixel to the right in the original image, and

the procedure is repeated. When the row ends,

the matrix moves to the next row. To process the

edges of the image, when the center of the

matrix is at the outermost pixel of the photo,

part of the kernel protrudes beyond the image.

To solve this problem, either addition or

ignoring is used. When adding, a frame of black

pixels is added, or the outermost pixels are

duplicated. Ignoring – the outermost strip with

a width equal to the kernel radius is not

processed. After this step, an image will be

obtained where small details and noise are

absent, and important contours remain, but

slightly blurred.

2. Applying a gradient (usually Sobel),

which allows you to determine the intensity

(strength) of the gradient and its direction.

3. Non-Maximum Suppression – fine-tuning

of boundaries. The essence of this stage is to

“thin out” the edges. Only those pixels that are

local intensity maxima in the gradient direction

are left. The gradient direction (which can be at

any angle from 0 to 360°) is rounded to one of

four main directions: 0° (horizontal), 45°

(diagonal), 90° (vertical), 135° (diagonal). For

each pixel, it is compared with two neighboring

pixels in the same direction. If the gradient is

directed horizontally (0°), the current pixel is

compared to the pixels to the left and right. If

the current pixel has the highest intensity

among these three, then it is left. If not, set its

brightness to 0.

4. Double threshold filtering, which allows

filtering out pixels that have a high gradient due

to noise, rather than the real boundary of the

object. The algorithm uses two thresholds:

lower and upper. All pixels are divided into

three types:

- strong – gradient above the upper threshold.

- weak – gradient between thresholds. These are

“candidates” in the limit.

- irrelevant – gradient below the lower

threshold. These pixels are removed (turned

black).

5. Hysteresis edge tracing is the final step,

where a weak pixel is recognized as part of a

true boundary and remains if it touches a strong

pixel. If a weak pixel stands alone and there are

no strong pixels around it, then such a pixel is

considered noise and is removed. Before using

such a detector, the original image is usually

converted to grayscale to reduce computational

costs. This step is typical for many image

processing methods.

Thus, first-order methods (gradient

methods) determine contours by calculating the

first derivative (change in brightness). To do

this, small matrices are used that "slide" over

the image. The Roberts operator calculates the

difference between diagonal pixels, has a kernel

with a matrix 2×2, very fast and finds sharp

corners well. Disadvantage is sensitive to noise

and intermittent contours. The Prewitt operator

uses a mask to calculate the gradient

horizontally and vertically. The size of the mask

matrix 3×3, suppresses noise better than

Roberts due to larger analysis area, but creates

"blurred" and thick contours and does not take

into account the central weight of the pixel. The

Sobel operator is an improved version of the

Prewitt operator. In the matrix, the central

pixels have a greater weight, the kernel has a

size 3×3, quickly solves simple problems,

smooth’s noise well and gives a clear gradient

direction. The disadvantage is that it leaves

thick outlines.

Second-order operators (Laplacian) look for

points where the first derivative has an extreme

(crossing through zero of the second

derivative). Responds equally to contours in all

directions, finds very fine boundaries, but is

extremely sensitive to noise. Even noise

invisible to the eye can turn the result into a

Information technologies

72 SMART TECHNOLOGIES:
Industrial and Civil Engineering, Issue 4(17), 2025, 66-74

"white noise". Usually used together with

blurring (Laplacian of Gaussian).

Kenny algorithm is a multi-step method that

includes a whole process, namely Gaussian

filtering, Sobel filtering, non-maximal

suppression and hysteresis. This algorithm has

the best accuracy compared to the previous

ones, gives thin, continuous lines. The

disadvantage is that it is computationally

complex (slower than Sobel). Requires manual

adjustment of two thresholds.

In Table 1 shows a comparison of indicators

for different image processing operators.

Table 1. Operator comparison
Operator

Core

size

Sensiti

vity to

noise

Detecti

on

accurac

y

Speed

Roberts

2×2

High Low High

Prewitta 3×3

Wedne

sday

Mediu

m

Mediu

m

Sobel 3×3

Low High Mediu

m

Kenny 3×3 Low High Low

Laplacia

n

3×3 High High Mediu

m

Morphological analysis is a set of image

processing methods based on set theory and

topology, which allows you to change image

parameters and subsequently accelerate

processing for contour detection. The main

functions of morphological analysis are

erosion, dilation, opening and closing.

Morphological analysis functions allow you to

modify the shape of objects in an image,

highlighting or suppressing certain structures,

for example, blurring or enhancing the

boundaries of foreground pixel regions.

Structural elements of modifiers can be small

matrices (usually 3×3 or 5×5), which define the

shape of operations, in particular, the most

commonly used are a rectangle and a circle

(approximated on a discrete grid). For the

rectangular modifier 3×3, the kernel will be this

matrix:



















111

111

111

K

. (19)

The principle of the erosion modifier is to re-

duce the size of objects in an image by blurring

their boundaries. The erosion operator takes

two pieces of data as input. The first is the im-

age to be eroded, the second is a structural ele-

ment (the erosion kernel) that determines the

exact effect of erosion on the input image. Typ-

ically, erosion is best applied to binary images,

but there are versions that work with grayscale

images.

Erosion for a binary image consists in super-

imposing an erosion kernel on a part of the pixel

array of the output image that is equal in size to

the pixel array of the mask. Provided that all the

pixels of the mask coincide with the pixels of

the output image, then the pixel of the output

image that corresponds to the central position

of the mask remains unchanged, otherwise such

a pixel is converted to the background.

Let A be the original image represented as a

function
A:Z2→V , (20)

where: V – a set of pixel values (e.g., {0,1} for

binary images or [0,255] for grayscale).

If B is a structural element that can also be

represented as a matrix B:

Z2→{0,1}, (21)

where: B defines the shape of the neighborhood

(e.g., a 3×3 rectangle), then for binary images

the erosion is defined as:

,min

b)minA(x)B(A

)1,1(),1()1,1(

)1,(),()1,(

)1,1(),1()1,1(





























jijiji

jijiji

jijiji

Bb

AAA

AAA

AAA

x

 (22)

where: ⊖ – erosion operator, x – pixel

coordinates, b – coordinates of non-zero

elements of a structural element B.

On Fig. 1 shows a graphical algorithm for

performing erosion for a binary image. Such an

algorithm has the following description. For

each pixel A(i,j) checks whether all pixels that

Information technologies

SMART TECHNOLOGIES: 73
Industrial and Civil Engineering, Issue 4(17), 2025, 66-74

overlap the mask 3×3 equal 1. If at least one

pixel in the neighborhood equals 0, then the

result for this pixel is – 0. Only the central

pixels of the object around which all pixels are

the same and non-zero brightness remain 1.

The effect of applying erosion: removes

small objects (noise); separates stuck objects;

reduces the size of objects.

The 3×3 square is probably the most com-

mon structural element used in erosion opera-

tions, but others can be used. A larger structural

element creates a more pronounced erosion ef-

fect, although very similar effects can usually

be achieved by repeated erosions using a

smaller structural element of similar shape.

With larger structural elements, it is quite com-

mon to use a structural element that is roughly

disc-shaped, as opposed to a square.

Erosions can be made directional by using

less symmetrical structuring elements. For ex-

ample, a structuring element that is 10 pixels

wide and 1 pixel tall will erode only in the hor-

izontal direction. Similarly, a 3×3 square struc-

turing element with its origin in the middle of

the top row rather than in the center will erode

the bottom of the region more than the top.

Erosion of gray tones using a flat disk-

shaped structural element usually darkens the

image. Light areas surrounded by dark areas de-

crease in size, and dark areas surrounded by

light areas increase in size. Small bright spots

in the image will disappear as they fade to their

surrounding intensity value, while small dark

spots will become larger. The effect is most no-

ticeable in areas of the image where the inten-

sity changes rapidly, while areas of fairly uni-

form intensity will remain more or less un-

changed except at their edges. Flat disk-shaped

erosion cores cause small peaks in the image to

disappear and valleys to widen.

REFERENCES

1. Redmon, J., Divvala, S., Girshick, R., Far-

hadi, A. (2015). You only look once: Unified,

real-time object detection, [Online]. Available:

https://arxiv.org/abs/1506.02640.

2. Melin P., Gonzalez C., Castro J., Mendoza O.,

Castillo O. (2014). “Edge-Detection Method for

Image Processing Based on Generalized Type-2

Fuzzy Logic,” IEEE Transactions on Fuzzy Sys-

tems, v. 22, 1515—1525.

3. Tymchyshyn R., Volkov O., Gospodarchuk

O., Bogachuk Yu. (2018). Modern approaches

to computer vision. Control Systems and Com-

puters, No.6, 47-73. https://doi.org/10.15407/

usim.2018.06.046.

 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0

→ 1 1 1 1 0 → 1 1 1 1 0 → 1 1 1 1 0 → 1 1 1 1 0 →

 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0

→ 1 1 1 1 0 → 1 1 1 1 0 → 1 1 1 0 0 → 1 1 1 0 0 →

 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

→ 1 1 1 1 0 → 1 1 1 1 0 → 1 1 1 0 0 →

 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0

 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

Fig. 1. Example of applying erosion the binary image

https://arxiv.org/abs/1506.02640
https://doi.org/10.15407/%20usim.2018.06.046
https://doi.org/10.15407/%20usim.2018.06.046

Information technologies

74 SMART TECHNOLOGIES:
Industrial and Civil Engineering, Issue 4(17), 2025, 66-74

4. Suriyababu V.K., Vuik C., Möller M. (2023).

Towards a High Quality Shrink Wrap Mesh

Generation Algorithm Using Mathematical Mor-

phology. Computer-Aided Design, Vol. 164,

103608, https://doi.org/10.1016/j.cad.

2023.103608.

5. Courteaux M., Ramlot B., Lambert P., Van

Wallendael G. (2025). Lightweight Implicit

Approximation of the Minkowski Sum of an N-

Dimensional Ellipsoid and Hyperrectangle.

Mathematics, 13(8), 1326.

https://doi.org/10.3390/math13081326.

6. Bernholt T., Eisenbrand F., Hofmeister T.
(2009). Constrained Minkowski sums: A geo-

metric framework for solving interval problems

in computational biology efficiently. Discret.

Comput. Geom., 42, 22–36.

7. Govindaraju N. K., Lin M. C., Manocha D.
(2004). Fast and reliable collision culling using

graphics hardware. In Proceedings of the ACM

Symposium on Virtual Reality Software and

Technology, New York, NY, USA, 10–12 No-

vember, VRST’04, 2–9.

8. Agarwal P. K., Flato E., Halperin D. (2002).

Polygon decomposition for efficient construc-

tion of Minkowski sums. Comput. Geom., 21,

39–61.

9. Courteaux M., Mareen H., Ramlot B., Lam-

bert P., Van Wallendael, G. (2024). Dimen-

sionality Reduction for the Real-Time Light-

Field View Synthesis of Kernel-Based Models.

Electronics, 13(20), 4062.

https://doi.org/10.3390/ electronics13204062/

10. Zerman E., Ozcinar C., Gao P., Smolic A.

(2020). Textured Mesh vs Coloured Point Cloud:

A Subjective Study for Volumetric Video Com-

pression. In Proceedings of the 2020 12th Inter-

national Conference on Quality of Multimedia

Experience, QoMEX, Athlone, Ireland, 26–28

May 2020.

Порівняльний аналіз алгоритмів визначення

контурів на зображеннях в задачах

комп'ютерного зору. Частина 1

Дмитро Міщук1, Євген Міщук2,

Дмитро Коржевін3

1,2Київський національний університет

будівництва і архітектури,
3Cisco Talos Intelligence

Анотація. Визначення контурів на

зображеннях є однією з фундаментальних задач

комп’ютерного зору, яка лежить в основі

багатьох сучасних технологій. Їх точне

виявлення дозволяє розв’язувати широкий

спектр практичних завдань: від сегментації та

розпізнавання об’єктів до 3D-реконструкції,

медичної діагностики та автономного керування

системами.

В галузі комп’ютерного зору досягнуто

значного прогресу в створенні алгоритмів

обробки зображень, проте залишається багато

нерозв’язаних задач. Актуальними залишаються

задачі з покращення швидкодії розв’язання

існуючих алгоритмів, розробки алгоритмів для

роботи з обмеженими обчислювальними

ресурсами пам’яті.

В даній роботі пропонується опис і аналіз

деяких відомих алгоритмів обробки зображень з

визначення контурів на зображенні. Як відомо

зображення, в комп’ютерних системах це набір

пікселів заданої яскравості та кольору. Таке

представлення можна відображати у виді

матриць, де кожен її елемент – це піксель, а

положення – це координати кожного пікселя.

Таким чином обробка зображення з позиції

математики – це робота з матрицями та

множинами. Якість алгоритму обробки буде

залежати від обраної методики роботи з

матрицями.

Нейронні мережі, хоча і не є новим підходом,

проте здобули широку популярність відносно

нещодавно, головним чином завдяки розвитку

згорткових нейронних мереж, які

спеціалізуються на обробці фото- та відеоданих.

Крім того, використання рекурентних

нейронних мереж дозволяє здійснювати пошук

оптимальної архітектури для нейромережевих

систем. Різні моделі були адаптовані до

специфічних обмежень, таких як розмір самої

моделі, обчислювальні ресурси чи забезпечення

необхідної точності.

Альтернативними підходами до нейронної

мережі є алгоритми на основі детекторів та

дескрипторів. По суті це алгоритми, які

дозволяють порівняти зображення на основі

деяких базових ознак. Наприклад, щоб

зрозуміти, що на двох різних фото зображений

один і той самий об’єкт, комп'ютер не порівнює

кожен піксель, а шукає «особливі» місця і описує

їх математично, що значно пришвидшує

обробку зображення, проте може давати

похибки.

Ключові слова: оператор Робертса, оператор

Превітта, Лапласіан, ерозія, розмиття,

морфологічні процеси, дилатація, нормалізація.

https://doi.org/10.1016/j.cad
https://doi.org/10.3390/math13081326
https://doi.org/10.3390/%20electronics13204062/

