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Abstract. Identifying contours in images is a 

fundamental task in computer vision, underpinning 

many modern technologies. Their accurate 

detection enables the solution of a wide range of 

practical problems, including segmentation and 

object recognition, 3D reconstruction, medical 

diagnostics, and autonomous control of systems.  

In the field of computer vision, significant 

progress has been made in developing image 

processing algorithms; however, many unsolved 

problems remain. The tasks of improving the speed 

of solving existing algorithms and developing 

algorithms for working with limited computational 

memory resources remain relevant. 

This paper presents a description and analysis of 

several well-known image processing algorithms 

for detecting contours in an image. 

It is known that an image in computer systems is 

a set of pixels of a given brightness and color. Such 

a representation can be represented in the form of 

matrices, where each of its elements is a pixel, and 

the position is the coordinates of each pixel. Thus, 

image processing from the position of mathematics 

is working with matrices and sets. The quality of the 

processing algorithm will depend on the chosen 

method of working with matrices. 

Neural networks, although not a new approach, 

have gained widespread popularity relatively 

recently, mainly due to the development of 

convolutional neural networks, which specialize in 

processing photo and video data. In addition, the use 

of recurrent neural networks allows you to search 

for the optimal architecture for neural network 

systems. Different models have been adapted to 

specific constraints, such as the size of the model 

itself, computational resources, or ensuring the 

required accuracy.  

Alternative approaches to neural networks are 

algorithms based on detectors and descriptors. In 

essence, these are algorithms that allow you to 

compare images based on some basic features. For 

example, to understand that two different photos 

show the same object, the computer does not 

compare every pixel, but looks for "special" places 

and describes them mathematically, which 

significantly speeds up image processing, but can 

lead to errors.  

Keywords: Roberts operator, Prewitt operator, 

Laplassian, erosion, blurring, morphological 

processes, dilation, normalization. 

 

INTRODUCTION 

 

Contours are boundaries between objects or 

areas with different visual characteristics.  
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Today visual information processing is 

becoming increasingly automated; and contour 

detection methods are widely used in various 

industries. For example, in medicine, such 

image processing algorithms are used to 

analyze medical images (X-rays, MRI, CT 

scans), which allows doctors to diagnose 

diseases faster and more accurately. In the field 

of autonomous vehicles, contours help 

guidance systems detect obstacles, pedestrians, 

and other objects on the road. In remote sensing 

of the Earth, contour detection is used to 

process satellite images, which is important for 

monitoring environmental changes, urban 

planning, and resource management.  

Thus, the development and improvement of 

contour detection methods is a relevant area of 

research, since the quality and reliability of 

many automated systems depend on their 

effectiveness. 
 

PURPOSE AND OBJECTIVES 

 

The main goal of this work is to analyze and 

compare classical and modern methods of 

contour detection. 

The objectives of the work were to identify 

the advantages and disadvantages of each 

approach and assess the applicability of the 

methods depending on the type of images and 

tasks. 

 

PRESENTATION OF THE MAIN 

MATERIAL 

 

Image edge detection methods can be 

classified according to the approach used to 

detect the boundaries between objects. The 

main known detection categories include: 

1. Gradient methods - These methods are based 

on the analysis of the intensity changes of 

pixels in an image. Contours are defined as 

areas with a high brightness gradient. The 

most common algorithms include the Sobel, 

Prewitt, Roberts operators, and the Canny 

operator, which combines noise filtering, 

gradient calculation, and hysteresis 

thresholding to obtain thin and continuous 

contours. 

2. Laplacian-based methods. The Laplacian is 

a second-order differential operator that 

detects areas of rapid intensity change. This 

method is sensitive to noise, so it is often 

used in conjunction with pre-filtering (e.g., 

Gaussian blur). Laplacian-based methods 

allow for the detection of contours of 

varying thickness, but require additional 

processing to eliminate false detections. 

3. Methods based on morphological analysis. 

Morphological processes (erosion, dilation, 

opening, closing) are used to extract 

contours by processing binary or gray 

images. These methods are especially 

effective for processing images with clear 

boundaries between objects, for example, in 

the tasks of texture segmentation or analysis 

of microscopic images. 

4. Methods based on active contours (Snakes, 

Level Set) - these are methods that use 

deformed curves that adapt to the 

boundaries of objects under the influence of 

internal and external forces. Active contour 

methods allow you to obtain smooth and 

continuous contours, but require an initial 

approximation and are computationally 

more complex compared to gradient 

methods. 

5. Machine learning and deep learning methods 

- these are modern approaches to edge 

detection that are built on the basis of fuzzy 

neural network logic, in particular 

convolutional     neural networks (CNN) and 

U-Net-type architectures. These methods 

allow you to automatically learn to detect 

edges based on large data sets, which 

significantly increases accuracy and noise 

resistance. Examples: HED (Holistically-

Nested Edge Detection) algorithms, RCF 

(Rich Convolutional Features). 

The Roberts operator is one of the simplest 

methods for determining contours. It calculates 

the gradient using two 2×2 matrices 

(convolution kernels) that approximate 

derivatives along the diagonals: 
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Algorithm for applying the Roberts 

operator. Suppose that the input image is 

represented as a two-dimensional matrix of 

pixels I with size M × N, where each pixel has 

an intensity from 0 to 255. At the output, this 

algorithm returns a new image matrix G with 

selected contours of size M×N.  

To implement this algorithm, you first need 

to create an empty matrix G with size M×N and 

specify Roberts kernels – matrices of size 2×2 

(1). To process the original image, it is 

necessary for each pixel I(i, j) (where 

1<i<(M−1), 1<j<(N−1)) calculate the gradient 

value using the next formula: 
 

gx = I(i, j)⋅Gx(0, 0)+ I(i, j+1)⋅Gx(0, 1)+ 

+ I(i+1, j)⋅Gx(1, 0)+ I(i+1, j+1)⋅Gx(1, 1) 
(2) 

 

gy = I(i, j)⋅Gy(0, 0)+ I(i, j+1)⋅Gy(0, 1)+  

+ I(i+1, j)⋅Gy(1, 0)+ I(i+1, j+1)⋅Gy(1, 1) 
(3) 

 

Next, the gradient modulus is calculated, 

which will reflect the pixel value in the new 

image: 
 

G(i,j)=
22
yx gg     (4)  

 

To visualize the gradient values, they need to 

be normalized. To do this, you need to find the 

minimum Gmin and maximum Gmax values in the 

gradient matrix and give each value Gi,j to the 

range [0, 255] according to the following 

formula: 
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where ),( jinormG  - normalized pixel brightness 

value.  

If ),( jinormG  < 0 then ),( jinormG = 0, if 

),( jinormG  > 255 then ),( jinormG = 255, if Gmin = 

Gmax then ),( jinormG = 0. 

The advantages of this method of image 

processing are its simplicity of implementation, 

but for large image sizes it requires a large 

number of calculations and sorting of the 

gradient array. This method is also sensitive to 

noise and can detect contours only along 

diagonals, which can lead to missing some 

boundaries. It is mainly used for fast processing 

of small images or as a preliminary stage in 

more complex algorithms. 

The Prewitt operator uses two kernel 

matrices of size 3×3 to calculate the horizontal 

gradient (Gx) and vertical (Gy): 
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(6) 

 

Algorithm for applying the Prewitt 

operator. For the image I in size M×N an 

empty matrix G created with size M×N. Next 

needs to specify the Prewitt kernels (6). 

For each pixel I(i, j), where 1 < i < M−1 and 1 

< j < N−1, need to calculate the gradient values: 
gx=I(i-1, j-1)⋅Gx(0, 0)+I(i−1,j)⋅Gx(0, 1)+I(i−1, j+1)×  

×Gx(0, 2) + I(i, j−1)⋅Gx(1, 0)+ I(i, j)⋅Gx(1, 1) +  

+I(i, j+1)⋅Gx(1, 2) + I(i+1, j-1)⋅Gx(2, 0) + 

+I(i+1, j)⋅Gx(2, 1) + I(i+1, j+1)⋅Gx(2, 2); 

(7) 

 

gy= I(i-1, j-1)⋅Gy(0, 0)+I(i-1, j)⋅Gy(0, 1)+I(i-1, j+1) × 

×Gy(0, 2) + I(i, j-1)⋅Gy(1, 0)+I(i, j)⋅Gy(1, 1)+ 

+I(i-1, j+1)⋅Gy(1, 2)+I(i+1, j-1)⋅Gy(2, 0)+  

+I(i+1, j)⋅Gy(2, 1)+ I(i+1, j+1)⋅Gy(2, 2). 

(8) 

 

This algorithm ignores the extreme rows and 

columns, since the kernel is 3×3 and does not 

fit on the edges. Next, the gradient modulus is 

determined using a similar formula (4), and 

normalization is performed. 

This algorithm detects contours better than 

the Roberts algorithm, but is also sensitive to 

noise - small objects or individual pixels. It is 

often used for processing medium-quality 

images, where speed and simplicity are 

important. 

The Sobel operator is the most common of 

these three. It also uses two 3×3 cores, but with 

additional weighting for the center row/column, 

which reduces sensitivity to noise: 
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The gradient for the Sobel operator is 

calculated similarly to that for the Prewitt 

operator. This method can suppress noise better 

than Prewitt and Roberts, which allows you to 

more accurately determine the direction of the 

contour. The disadvantages of this method of 

contour determination are that this algorithm 

can produce thick contours and requires 

additional processing for fine boundary 

selection. The Sobel operator using in computer 

vision systems, medical imaging, and satellite 

image processing. 

The Laplacian calculates the change in the 

intensity of the image brightness at each point, 

indicating the boundaries of objects where the 

brightness changes sharply and is defined as the 

sum of the second derivatives in the coordinates 

x and y: 
 

2
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where: I — pixel intensity. 

Brightness function I depends on the 

coordinates of the pixel in the image – x and y, 

that is I(x, y) – is the brightness of the pixel at 

position (x, y). The derivative shows how 

quickly the brightness changes when moving 

from one pixel to the next. Since it is not 

possible to calculate the derivative directly in 

the image, the following approximation is used: 

- the first derivative is approximated as the 

difference in brightness of neighboring pixels: 
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- second derivative – difference of first 

derivatives: 
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In practice, for discrete images, instead of 

searching for gradients, Laplacian 

approximation is used using a convolution 

kernel, for example: 
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Algorithm for applying the Laplacian. At 

the beginning of processing, the original image 

must be converted to grayscale (if it is color) 

and transformed into a matrix of pixels I with 

normalization to values from the range [0, 1] or 

[0, 255]. Next, a new matrix of the same size is 

created, where each pixel will be the result of 

applying the Laplacian to the corresponding 

pixel of the original image. To do this, a kernel 

(kernel convolution) is applied to each pixel of 

the original image (except for the boundaries) 

so that the center of the kernel coincides with 

the current pixel. Next, the new pixel value is 

calculated as the sum of the products of the 

image pixel values and the corresponding 

kernel values: 

 

new_pixel(x,y) = I(x-1,y-1)⋅K[0,0]+ 

+I(x-1,y)⋅K[0,1]+I(x-1,y+1)⋅K[0,2]+ 

+I(x,y-1)⋅K[1,0]+I(x,y)⋅K[1,1]+ 

+I(x,y+1)⋅K[1,2]+I(x+1,y-1)⋅K[2,0]+ 

+ I(x+1,y)*K[2,1] + I(x+1,y+1)*K[2,2]. 

(14) 

 

Pixels at the image borders can be ignored 

(left black), reflected, or border extended. 

After convolution with the Laplacian kernel, 

pixel values can be both positive and negative, 

so normalization to the range [0, 255] is applied 

for visualization according to the algorithm 

using the formula (5). 

Sometimes thresholding is also applied after 

normalization to retain only the strongest 

contours: 

 

if abs(normalized_pixel) > threshold: 

    edge_pixel = 255 

else: 

    edge_pixel = 0 
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This approach allows for contour detection 

because the Laplacian responds to abrupt 

changes in intensity. 

The Kenny algorithm is a multi-stage 

algorithm that combines high accuracy in 

detecting significant edges with minimizing 

false positives. It is one of the most effective 

methods for detecting contours in computer 

vision. The Kenny algorithm is not limited to 

calculating the smoothed gradient of the image. 

Only the points of maximum gradient of the 

image remain in the contour, and the maxima 

near the boundary are removed. His method 

also uses information about the direction of 

change of the image contour boundary in order 

to remove noise near the boundary and not 

break the contour near local gradient maxima. 

Further, weak boundaries are removed using 

two thresholding processes. Fragments of the 

contour boundaries are processed as a single 

whole fragment. If the gradient value anywhere 

on the processed fragment exceeds the upper 

threshold, then such a fragment remains valid 

even in those places where the gradient value is 

lower than this threshold value, until the 

gradient value becomes lower than the lower 

threshold. If there is no point with a value 

greater than the upper threshold on the entire 

fragment, then such a fragment is deleted. This 

approach allows you to reduce the number of 

breaks in the original boundaries. The use of 

noise reduction in the Kenny algorithm 

increases the stability of the results, but 

increases the computational costs and can lead 

to distortion and loss of clarity of boundaries. 

For example, this algorithm rounds the corners 

of objects and destroys the boundaries at the 

connection points. 

The algorithm for applying the Kenny 

method consists of sequentially executing the 

following image processing cycles. 

1. Gaussian smoothing, which is essentially 

a blurring of the original image to remove noise 

(small scattered pixels). A two-dimensional 

Gaussian filter is used - a matrix (kernel) that 

processes the pixels of the original image. Each 

pixel of the kernel is a weighted average of its 

neighbors, and the weights are determined by 

the Gaussian function: 
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where   – standard deviation, which 

determines the degree of “blur” (the larger this 

value, the stronger the blur and the better the 

noise suppression); x, y – pixel coordinates 

relative to the center of the filter kernel. 

For a blur kernel of size 3×3 and = 1 were 

define the components of the matrix: 
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Then the blur filter kernel will be like this: 
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In practical applications, a simplified 

Gaussian formula is often used for each pixel: 
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In this case, the resulting kernel matrix is 

normalized. To do this, the sum of all elements 

of this matrix is determined, and each of its 

elements is divided by this sum. This allows 

you not change the brightness of the original 

image. To calculate the new brightness for a 

specific pixel, you need to superimpose the 

convolution kernel on the original image. To do 

this, superimpose the center of the convolution 

matrix on the selected pixel (usually starting 

from the upper left corner). Next, the brightness 

value of each neighboring pixel must be 
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multiplied by the corresponding coefficient of 

the kernel matrix, which is "underneath it". The 

resulting values added, and the result will be the 

new (smoothed) pixel value: 
 

 
 

 
1

1

1

1
),(),(

i j
jijyixnew gIp  ,   (18) 

 

where newp  is pixel intensity value of the new 

image; ),( jyixI  the pixel intensity of the 

original image; ),( jig is blur kernel value. 

The resulting total value is written to a new 

image array at the same location as the central 

kernel pixel. Then the kernel matrix is shifted 

one pixel to the right in the original image, and 

the procedure is repeated. When the row ends, 

the matrix moves to the next row. To process the 

edges of the image, when the center of the 

matrix is at the outermost pixel of the photo, 

part of the kernel protrudes beyond the image. 

To solve this problem, either addition or 

ignoring is used. When adding, a frame of black 

pixels is added, or the outermost pixels are 

duplicated. Ignoring – the outermost strip with 

a width equal to the kernel radius is not 

processed. After this step, an image will be 

obtained where small details and noise are 

absent, and important contours remain, but 

slightly blurred. 

2. Applying a gradient (usually Sobel), 

which allows you to determine the intensity 

(strength) of the gradient and its direction. 

3. Non-Maximum Suppression – fine-tuning 

of boundaries. The essence of this stage is to 

“thin out” the edges. Only those pixels that are 

local intensity maxima in the gradient direction 

are left. The gradient direction (which can be at 

any angle from 0 to 360°) is rounded to one of 

four main directions: 0° (horizontal), 45° 

(diagonal), 90° (vertical), 135° (diagonal). For 

each pixel, it is compared with two neighboring 

pixels in the same direction. If the gradient is 

directed horizontally (0°), the current pixel is 

compared to the pixels to the left and right. If 

the current pixel has the highest intensity 

among these three, then it is left. If not, set its 

brightness to 0. 

4. Double threshold filtering, which allows 

filtering out pixels that have a high gradient due 

to noise, rather than the real boundary of the 

object. The algorithm uses two thresholds: 

lower and upper. All pixels are divided into 

three types: 

- strong – gradient above the upper threshold. 

- weak – gradient between thresholds. These are 

“candidates” in the limit. 

- irrelevant – gradient below the lower 

threshold. These pixels are removed (turned 

black). 

5. Hysteresis edge tracing is the final step, 

where a weak pixel is recognized as part of a 

true boundary and remains if it touches a strong 

pixel. If a weak pixel stands alone and there are 

no strong pixels around it, then such a pixel is 

considered noise and is removed. Before using 

such a detector, the original image is usually 

converted to grayscale to reduce computational 

costs. This step is typical for many image 

processing methods. 

Thus, first-order methods (gradient 

methods) determine contours by calculating the 

first derivative (change in brightness). To do 

this, small matrices are used that "slide" over 

the image. The Roberts operator calculates the 

difference between diagonal pixels, has a kernel 

with a matrix 2×2, very fast and finds sharp 

corners well. Disadvantage is sensitive to noise 

and intermittent contours. The Prewitt operator 

uses a mask to calculate the gradient 

horizontally and vertically. The size of the mask 

matrix 3×3, suppresses noise better than 

Roberts due to larger analysis area, but creates 

"blurred" and thick contours and does not take 

into account the central weight of the pixel. The 

Sobel operator is an improved version of the 

Prewitt operator. In the matrix, the central 

pixels have a greater weight, the kernel has a 

size 3×3, quickly solves simple problems, 

smooth’s noise well and gives a clear gradient 

direction. The disadvantage is that it leaves 

thick outlines.  

Second-order operators (Laplacian) look for 

points where the first derivative has an extreme 

(crossing through zero of the second 

derivative). Responds equally to contours in all 

directions, finds very fine boundaries, but is 

extremely sensitive to noise. Even noise 

invisible to the eye can turn the result into a 
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"white noise". Usually used together with 

blurring (Laplacian of Gaussian).  

Kenny algorithm is a multi-step method that 

includes a whole process, namely Gaussian 

filtering, Sobel filtering, non-maximal 

suppression and hysteresis. This algorithm has 

the best accuracy compared to the previous 

ones, gives thin, continuous lines. The 

disadvantage is that it is computationally 

complex (slower than Sobel). Requires manual 

adjustment of two thresholds. 

In Table 1 shows a comparison of indicators 

for different image processing operators. 
 

Table 1. Operator comparison 
Operator 

 

Core 

size 

Sensiti

vity to 

noise 

Detecti

on 

accurac

y 

Speed 

Roberts 

 

2×2 

 

High Low High 

Prewitta 3×3 

 

Wedne

sday 

Mediu

m 

Mediu

m 

Sobel 3×3 

 

Low High Mediu

m 

Kenny 3×3 Low High Low 

Laplacia

n 

3×3 High High Mediu

m 

 

Morphological analysis is a set of image 

processing methods based on set theory and 

topology, which allows you to change image 

parameters and subsequently accelerate 

processing for contour detection. The main 

functions of morphological analysis are 

erosion, dilation, opening and closing. 

Morphological analysis functions allow you to 

modify the shape of objects in an image, 

highlighting or suppressing certain structures, 

for example, blurring or enhancing the 

boundaries of foreground pixel regions. 

Structural elements of modifiers can be small 

matrices (usually 3×3 or 5×5), which define the 

shape of operations, in particular, the most 

commonly used are a rectangle and a circle 

(approximated on a discrete grid). For the 

rectangular modifier 3×3, the kernel will be this 

matrix: 
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The principle of the erosion modifier is to re-

duce the size of objects in an image by blurring 

their boundaries. The erosion operator takes 

two pieces of data as input. The first is the im-

age to be eroded, the second is a structural ele-

ment (the erosion kernel) that determines the 

exact effect of erosion on the input image. Typ-

ically, erosion is best applied to binary images, 

but there are versions that work with grayscale 

images. 

Erosion for a binary image consists in super-

imposing an erosion kernel on a part of the pixel 

array of the output image that is equal in size to 

the pixel array of the mask. Provided that all the 

pixels of the mask coincide with the pixels of 

the output image, then the pixel of the output 

image that corresponds to the central position 

of the mask remains unchanged, otherwise such 

a pixel is converted to the background. 

Let A be the original image represented as a 

function  
A:Z2→V ,   (20)  

 

where: V – a set of pixel values (e.g., {0,1} for 

binary images or [0,255] for grayscale). 

If B is a structural element that can also be 

represented as a matrix B:  
 

Z2→{0,1},    (21) 

 

where: B defines the shape of the neighborhood 

(e.g., a 3×3 rectangle), then for binary images 

the erosion is defined as: 
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      (22) 

 

where: ⊖ – erosion operator, x – pixel 

coordinates, b – coordinates of non-zero 

elements of a structural element B. 

On Fig. 1 shows a graphical algorithm for 

performing erosion for a binary image. Such an 

algorithm has the following description. For 

each pixel A(i,j) checks whether all pixels that 
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overlap the mask 3×3 equal 1. If at least one 

pixel in the neighborhood equals 0, then the 

result for this pixel is – 0. Only the central 

pixels of the object around which all pixels are 

the same and non-zero brightness remain 1. 

The effect of applying erosion: removes 

small objects (noise); separates stuck objects; 

reduces the size of objects. 

The 3×3 square is probably the most com-

mon structural element used in erosion opera-

tions, but others can be used. A larger structural 

element creates a more pronounced erosion ef-

fect, although very similar effects can usually 

be achieved by repeated erosions using a 

smaller structural element of similar shape. 

With larger structural elements, it is quite com-

mon to use a structural element that is roughly 

disc-shaped, as opposed to a square. 

Erosions can be made directional by using 

less symmetrical structuring elements. For ex-

ample, a structuring element that is 10 pixels 

wide and 1 pixel tall will erode only in the hor-

izontal direction. Similarly, a 3×3 square struc-

turing element with its origin in the middle of 

the top row rather than in the center will erode 

the bottom of the region more than the top. 

Erosion of gray tones using a flat disk-

shaped structural element usually darkens the 

image. Light areas surrounded by dark areas de-

crease in size, and dark areas surrounded by 

light areas increase in size. Small bright spots 

in the image will disappear as they fade to their 

surrounding intensity value, while small dark 

spots will become larger. The effect is most no-

ticeable in areas of the image where the inten-

sity changes rapidly, while areas of fairly uni-

form intensity will remain more or less un-

changed except at their edges. Flat disk-shaped 

erosion cores cause small peaks in the image to 

disappear and valleys to widen. 

REFERENCES 

1. Redmon, J., Divvala, S., Girshick, R., Far-

hadi, A. (2015). You only look once: Unified, 

real-time object detection, [Online]. Available: 

https://arxiv.org/abs/1506.02640. 

2. Melin P., Gonzalez C., Castro J., Mendoza O., 

Castillo O. (2014). “Edge-Detection Method for 

Image Processing Based on Generalized Type-2 

Fuzzy Logic,” IEEE Transactions on Fuzzy Sys-

tems, v. 22, 1515—1525. 

3. Tymchyshyn R., Volkov O., Gospodarchuk 

O., Bogachuk Yu. (2018). Modern approaches 

to computer vision. Control Systems and Com-

puters, No.6, 47-73. https://doi.org/10.15407/ 

usim.2018.06.046. 

 

 1 1 1 1 0  1 1 1 1 0  1 1 1 1 0  1 1 1 1 0  

 1 1 1 1 0  1 1 1 1 0  1 1 1 1 0  1 1 1 0 0  

→ 1 1 1 1 0 → 1 1 1 1 0 → 1 1 1 1 0 → 1 1 1 1 0 → 

 1 1 1 1 0  1 1 1 1 0  1 1 1 1 0  1 1 1 1 0  

 1 1 1 0 0  1 1 1 0 0  1 1 1 0 0  1 1 1 0 0  

    

 1 1 1 1 0  1 1 1 1 0  1 1 1 1 0  1 1 1 1 0  

 1 1 1 0 0  1 1 1 1 0  1 1 1 1 0  1 1 1 0 0  

→ 1 1 1 1 0 → 1 1 1 1 0 → 1 1 1 0 0 → 1 1 1 0 0 → 

 1 1 1 1 0  1 1 1 1 0  1 1 1 1 0  1 1 1 1 0  

 1 1 1 0 0  1 1 1 0 0  1 1 1 0 0  1 1 1 0 0  

 

 1 1 1 1 0  1 1 1 1 0  1 1 1 1 0   

 1 1 1 0 0  1 1 1 0 0  1 1 1 0 0   

→ 1 1 1 1 0 → 1 1 1 1 0 → 1 1 1 0 0 →  

 1 1 0 1 0  1 1 1 0 0  1 1 0 0 0   

 1 1 1 0 0  1 1 1 0 0  1 1 1 0 0   

 

Fig. 1. Example of applying erosion the binary image 

https://arxiv.org/abs/1506.02640
https://doi.org/10.15407/%20usim.2018.06.046
https://doi.org/10.15407/%20usim.2018.06.046


Information technologies 

 

74  SMART TECHNOLOGIES: 
Industrial and Civil Engineering, Issue 4(17), 2025, 66-74 

4. Suriyababu V.K., Vuik C., Möller M. (2023). 

Towards a High Quality Shrink Wrap Mesh 

Generation Algorithm Using Mathematical Mor-

phology. Computer-Aided Design, Vol. 164, 

103608, https://doi.org/10.1016/j.cad. 

2023.103608. 

5. Courteaux M., Ramlot B., Lambert P., Van 

Wallendael G. (2025). Lightweight Implicit 

Approximation of the Minkowski Sum of an N-

Dimensional Ellipsoid and Hyperrectangle. 

Mathematics, 13(8), 1326. 

https://doi.org/10.3390/math13081326. 

6. Bernholt T., Eisenbrand F., Hofmeister T. 
(2009). Constrained Minkowski sums: A geo-

metric framework for solving interval problems 

in computational biology efficiently. Discret. 

Comput. Geom., 42, 22–36. 

7. Govindaraju N. K., Lin M. C., Manocha D. 
(2004). Fast and reliable collision culling using 

graphics hardware. In Proceedings of the ACM 

Symposium on Virtual Reality Software and 

Technology, New York, NY, USA, 10–12 No-

vember, VRST’04, 2–9. 

8. Agarwal P. K., Flato E., Halperin D. (2002). 

Polygon decomposition for efficient construc-

tion of Minkowski sums. Comput. Geom., 21, 

39–61. 

9. Courteaux M., Mareen H., Ramlot B., Lam-

bert P., Van Wallendael, G. (2024). Dimen-

sionality Reduction for the Real-Time Light-

Field View Synthesis of Kernel-Based Models. 

Electronics, 13(20), 4062. 

https://doi.org/10.3390/ electronics13204062/ 

10. Zerman E., Ozcinar C., Gao P., Smolic A. 

(2020). Textured Mesh vs Coloured Point Cloud: 

A Subjective Study for Volumetric Video Com-

pression. In Proceedings of the 2020 12th Inter-

national Conference on Quality of Multimedia 

Experience, QoMEX, Athlone, Ireland, 26–28 

May 2020. 

 

Порівняльний аналіз алгоритмів визначення 

контурів  на зображеннях в задачах  

комп'ютерного зору. Частина 1 

 

Дмитро Міщук1, Євген Міщук2,  

Дмитро Коржевін3 

 
1,2Київський національний університет  

будівництва і архітектури, 
3Cisco Talos Intelligence  

 

Анотація. Визначення контурів на 

зображеннях є однією з фундаментальних задач 

комп’ютерного зору, яка лежить в основі 

багатьох сучасних технологій. Їх точне 

виявлення дозволяє розв’язувати широкий 

спектр практичних завдань: від сегментації та 

розпізнавання об’єктів до 3D-реконструкції, 

медичної діагностики та автономного керування 

системами.  

В галузі комп’ютерного зору досягнуто 

значного прогресу в створенні алгоритмів 

обробки зображень, проте залишається багато 

нерозв’язаних задач. Актуальними залишаються 

задачі з покращення швидкодії розв’язання 

існуючих алгоритмів, розробки алгоритмів для 

роботи з обмеженими обчислювальними 

ресурсами пам’яті. 

В даній роботі пропонується опис і аналіз 

деяких відомих алгоритмів обробки зображень з 

визначення контурів на зображенні. Як відомо 

зображення, в комп’ютерних системах це набір 

пікселів заданої яскравості та кольору. Таке 

представлення можна відображати у виді 

матриць, де кожен її елемент – це піксель, а 

положення – це координати кожного пікселя. 

Таким чином обробка зображення з позиції 

математики – це робота з матрицями та 

множинами. Якість алгоритму обробки буде 

залежати від обраної методики роботи з 

матрицями. 

Нейронні мережі, хоча і не є новим підходом, 

проте здобули широку популярність відносно 

нещодавно, головним чином завдяки розвитку 

згорткових нейронних мереж, які 

спеціалізуються на обробці фото- та відеоданих. 

Крім того, використання рекурентних 

нейронних мереж дозволяє здійснювати пошук 

оптимальної архітектури для нейромережевих 

систем. Різні моделі були адаптовані до 

специфічних обмежень, таких як розмір самої 

моделі, обчислювальні ресурси чи забезпечення 

необхідної точності. 

Альтернативними підходами до нейронної 

мережі є алгоритми на основі детекторів та 

дескрипторів. По суті це алгоритми, які 

дозволяють порівняти зображення на основі 

деяких базових ознак. Наприклад, щоб 

зрозуміти, що на двох різних фото зображений 

один і той самий об’єкт, комп'ютер не порівнює 

кожен піксель, а шукає «особливі» місця і описує 

їх математично, що значно пришвидшує 

обробку зображення, проте може давати 

похибки.  

Ключові слова: оператор Робертса, оператор 

Превітта, Лапласіан, ерозія, розмиття, 

морфологічні процеси, дилатація, нормалізація. 
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