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Abstract. Urban infrastructure damage 

assessment is essential for post-disaster recovery, 

resource allocation, and city resilience planning. 

Manual inspections are slow, subjective, and unsafe. 

This study presents an extended review of computer 

vision (CV) and geographic information system 

(GIS) approaches for automated multi-source 

damage detection. Methods for classification, 

detection, segmentation, and change detection are 

analyzed. An expanded AI→Damage Index→GIS 

pipeline is proposed. Challenges specific to 

Ukrainian cities are examined. The paper provides a 

comprehensive foundation for implementing 

automated damage-mapping systems. 

Keywords: computer vision, GIS, damage 

assessment, segmentation, UAV imagery, 

reconstruction planning. 

 

INTRODUCTION 

 

Urban environments are highly vulnerable to 

large-scale disasters, including earthquakes, 

industrial explosions, and, most notably for 

Ukraine, warfare-related destruction [12, 20]. 

Rapid evaluation of infrastructure damage is 

critical for emergency response, reconstruction 

scheduling, prioritization of repair budgets, and 

risk mitigation [7, 13]. 

Traditional manual inspections pose several 

problems: low scalability, dependence on expert 

availability, safety risks, subjective assessments, 

and delays in compiling city-wide reports [6, 

12]. 

AI-based approaches can process thousands 

of images per hour and produce consistent, 

quantitative metrics. When combined with GIS 

layers such as building footprints, road 

networks, and population density, the results 

support municipal decision-making[15]. 

 

 

MODERN METHODS OF DAMAGE 

ASSESSMENT 

 

In this section, we examine the primary 

computer vision techniques applied to 

infrastructure damage assessment. Each method 

offers distinct advantages depending on the 

specific requirements of the assessment task and 

available data sources. 

Classification models assign a global 

severity category to an entire image. Typical 

labels include no damage, minor, moderate, 

severe, and destroyed. Common architectures 

such as ResNet, EfficientNet, and MobileNet [1, 

8] offer fast processing and low resource usage. 

However, these models lack spatial 

understanding of damage distribution within the 

image, limiting their utility for detailed damage 

mapping. 

Object detection models identify and 

localize specific damage components such as 

cracks, façade failures, debris piles, and roof 

collapse. Modern detectors like YOLOv8, 

YOLO-NAS, Faster R-CNN, and DETR [5, 16] 
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provide bounding boxes and confidence scores 

for each detected element. While these models 

enable rapid localization of damaged areas 

within complex urban scenes, they do not 

provide precise geometric boundaries of the 

damaged regions. 

Semantic segmentation provides pixel-level 

classification of damaged versus undamaged 

regions, which is essential for  calculating exact 

damage area. Widely used architectures include 

U-Net, U-Net++ [3, 4, 9], DeepLabv3+, Mask 

R-CNN, and the recent Segment Anything 

Model (SAM). Segmentation forms the 

backbone of quantitative damage analysis by 

enabling precise measurement of affected 

surfaces and providing the foundational data for 

Damage Index calculation. 

Change detection analyzes differences 

between pre-event and post-event images, 

making it particularly useful when baseline 

imagery exists from sources such as Google 

Street View or satellite archives. Common 

models include Siamese Networks, 

Transformer-based change detection 

architectures, and Temporal CNNs. This 

approach enables direct quantification of 

damage by comparing identical locations across 

time, eliminating ambiguity from pre-existing 

structural deterioration. 

 

COMPUTER VISION TECHNIQUES 

 

The evolution of deep learning architectures 

has significantly impacted damage assessment 

capabilities. Convolutional Neural Networks 

have dominated computer vision tasks for the 

past decade, establishing robust feature 

extraction methods for image analysis [3, 5]. 

However, Vision Transformers now provide 

superior contextual modeling through self-

attention mechanisms and outperform CNNs on 

large-scale datasets [11]. Transformers can 

capture long-range dependencies in images, 

which proves valuable for understanding 

damage patterns across entire building facades 

or urban blocks. 

Future damage assessment systems will 

increasingly rely on multimodal approaches that 

merge multiple data sources [17, 19]. These 

systems integrate visual imagery with metadata 

such as GPS coordinates and elevation data, GIS 

context layers providing urban infrastructure 

information, and text descriptions from field 

reports. This multimodal fusion enables more 

robust and comprehensive damage 

characterization by leveraging complementary 

information sources that individually may be 

incomplete or ambiguous. 

A critical component of standardized 

damage assessment is the Damage Index, a 

scalar metric representing normalized severity 

on a scale of 0–1 or 0–100 [15]. The DI 

incorporates multiple factors: percentage of 

structural surface damaged, presence and 

volume of debris, façade deformation 

magnitude, roof penetration area, and contextual 

GIS-based weighting that accounts for building 

importance, location, and structural type. The 

Damage Index enables cross-regional 

comparison and objective prioritization of 

reconstruction efforts, transforming qualitative 

visual assessments into quantitative decision-

making metrics. 

 

ROLE OF GIS IN DAMAGE MAPPING 

 

Geographic Information Systems provide 

the spatial intelligence infrastructure needed for 

effective reconstruction planning. The 

integration of computer vision outputs with GIS 

platforms transforms raw damage detections 

into actionable operational intelligence. 

Georeferencing aligns computer vision 

outputs with authoritative building footprints 

and cadastral data, ensuring accurate spatial 

localization of damage assessments. This 

process requires careful coordinate 

transformation and quality control to maintain 

positional accuracy across different data sources 

and coordinate systems. 

Aggregation capabilities summarize 

Damage Index values at multiple spatial scales, 

from individual buildings to grid cells, 

neighborhoods, districts, and entire 

municipalities. This multi-scale analysis enables 

decision-makers to understand damage patterns 

at the appropriate level of detail for their specific 

planning needs. 

Heatmap generation creates intuitive visual 

representations of damage density, allowing 

rapid identification of the most severely affected 
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areas for priority response and resource 

allocation [12, 13]. These 

visualizations communicate complex 

spatial patterns effectively to stakeholders who 

may lack technical expertise in geospatial 

analysis. 

Urban analytics functions leverage the 

integrated damage and GIS data to support 

advanced decision-making. Applications 

include population exposure estimation by 

overlaying damage maps with residential 

density data, road blockage assessment for 

emergency vehicle routing, proximity analysis 

identifying damage near critical facilities such 

as hospitals and schools, and multi-criteria 

prioritization of infrastructure repair based on 

structural importance, population served, and 

economic impact. 

 

KEY CHALLENGES 

 

Despite significant advances in AI-based 

damage mapping, several challenges must be 

addressed for successful implementation in 

Ukrainian cities. 

Dataset scarcity remains a fundamental 

obstacle [8, 20]. Limited training data exists for 

Ukrainian architectural styles, particularly 

Soviet-era panel buildings with unique 

structural characteristics that respond 

differently to damage compared to Western 

construction types. Developing representative 

training datasets requires extensive field 

documentation and expert annotation. 

Image source variability creates technical 

challenges for model generalization. Inputs 

range from high-altitude satellite imagery to 

low-altitude UAV footage and ground-level 

photographs, each exhibiting different 

resolutions, viewing angles, lighting 

conditions, and atmospheric effects. Models 

must maintain consistent performance across 

this heterogeneous input space. 

Ambiguous damage signatures complicate 

automated classification. Weathering, shadows, 

architectural features, and pre-existing 

deterioration can be misclassified as disaster 

damage. Distinguishing recent damage from 

historical deterioration requires temporal 

context that may not always be available. 

Coordinate system mismatches require 

careful geometric processing. Transforming 

between WGS84, UTM, and local coordinate 

systems while maintaining spatial accuracy 

demands robust geodetic procedures and 

quality control workflows. 

Lack of standardized Damage Index 

methodologies across organizations and 

countries makes it difficult to compare 

assessments and integrate data from multiple 

sources. International collaboration is needed to 

establish consistent calculation frameworks and 

validation protocols. 

The structural uniqueness of Soviet-era 

panel buildings presents a specialized 

challenge. These prefabricated concrete 

structures exhibit failure modes distinct from 

cast-in-place or masonry construction, 

requiring dedicated training data and 

potentially specialized model architectures. 

 

PROPOSED PIPELINE 

 

We propose an integrated processing 

pipeline that transforms raw imagery into 

actionable damage intelligence through 

sequential processing stages [6, 12]. 

The input stage accepts data from multiple 

sources: satellite imagery providing pre-event 

and post-event coverage at medium to high 

resolution, UAV imagery captured at low 

altitude delivering detailed building-level data 

with oblique viewing angles, ground 

photographs from first responders and civilians 

offering close-range damage documentation, 

and archived baseline imagery from Google 

Street View enabling temporal change 

detection. 

The computer vision module processes 

these diverse inputs through multiple analysis 

pathways. Semantic segmentation generates 

pixel-level damage masks quantifying affected 

surface area. Object detection identifies and 

localizes specific damage features such as 

façade collapse, debris accumulation, and 

structural deformation. Classification assigns 

overall severity levels to entire structures or 

image regions. Change detection performs 

temporal comparison between pre-event and 
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post-event imagery to isolate damage from pre-

existing conditions. 

Damage Index calculation integrates 

outputs from the computer vision module with 

contextual information. Weighted area ratio 

scoring quantifies the proportion of structural 

surface exhibiting damage. Structural failure 

metrics assess the severity of detected damage 

features. GIS-based contextual factors adjust 

the base damage score based on building 

importance, population served, and criticality to 

urban infrastructure networks. 

The GIS integration layer performs 

geospatial mapping to associate damage 

assessments with specific structures in the 

urban cadastre. Heatmap generation visualizes 

damage density at multiple spatial scales. 

Reconstruction priority zoning identifies areas 

requiring immediate intervention based on 

damage severity, population exposure, and 

infrastructure criticality. 

 

VISUAL EXAMPLES OF URBAN DAMAGE 

 

To illustrate the practical application of the 

proposed damage assessment pipeline, we 

present representative examples of 

infrastructure damage from Ukrainian cities 

affected by recent military operations. 

Figure 1 presents a schematic 

representation of the complete damage 

assessment pipeline, showing the flow from 

multiple input sources through computer vision 

processing, Damage Index calculation, and 

final GIS integration stages.  

Figure 2 demonstrates typical façade 

damage patterns observed in residential 

buildings in Kyiv. The image shows 

characteristic destruction including broken 

windows, partial wall collapse, and exposed 

reinforcement structures resulting from 

explosive impact. This type of damage is 

particularly common in multi-story panel 

buildings constructed during the Soviet era. 

 
 

 
Fig. 1. AI-based damage assessment pipeline 

showing integration of multiple data sources 

 

 

 
 

Fig. 2. Faсade destruction in residential building, 

Kyiv (example of moderate to severe damage 

classification) 

 

Figure 3 illustrates more severe structural 

failures documented in Kharkiv, including 

partial collapse of load-bearing panel walls, 

destroyed floor sections, and extensive 
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structural cracking. These damage patterns 

represent the most severe category in 

classification systems and require immediate 

structural stabilization interventions. 

 

 
 

Fig. 3. Severe structural damage with partial 

collapse, Kharkiv (example of severe to 

destroyed classification) 

 

These visual examples demonstrate the 

range of damage severity levels that the 

proposed AI-based assessment system must 

accurately classify and quantify. The variability 

in damage patterns, viewing angles, lighting 

conditions, and surrounding context illustrates 

the technical challenges discussed in the 

previous sections. 

 

IMPLEMENTATION 

CONSIDERATIONS 

 

Successful deployment of AI-based 

damage mapping systems requires addressing 

several practical considerations beyond 

algorithm development. 

Computing infrastructure must support 

efficient processing of large image datasets. 

Cloud-based GPU resources can provide 

scalable computation for initial processing, 

while edge computing on UAV platforms 

enables real-time damage assessment during 

reconnaissance missions. 

Model training requires diverse datasets 

representing the full range of Ukrainian 

architectural styles and damage patterns. 

Transfer learning from existing damage 

datasets can accelerate development, but 

domain-specific fine-tuning remains essential 

for optimal performance. 

Validation procedures must compare 

automated assessments against expert ground-

truth data collected through traditional field 

surveys. Establishing quality metrics and 

acceptable error thresholds requires 

collaboration between computer scientists and 

structural engineering experts. 

Integration with existing municipal GIS 

systems ensures compatibility with local 

planning workflows and data standards. APIs 

and data exchange formats must accommodate 

the technical constraints of legacy systems 

while enabling modern spatial analysis 

capabilities. 

User interface design must present 

complex spatial analysis results clearly to 

decision-makers who may lack technical 

expertise in remote sensing or geospatial 

analysis. Interactive web-based dashboards 

with intuitive visualization and filtering 

capabilities facilitate effective use of damage 

intelligence. 

 

CONCLUSIONS 

 

AI-based approaches offer unprecedented 

opportunities to automate infrastructure 

damage assessment at city scale. When 

integrated with Geographic Information 

Systems, these technologies enable rapid, 

objective, and data-driven reconstruction 

planning that would be impossible through 

traditional manual inspection methods. 

The current situation in Ukraine provides a 

unique real-world environment for developing 

and validating damage mapping methodologies 

that will have global applicability. The large 

scale of infrastructure damage, availability of 

multi-temporal imagery, and urgent need for 

effective reconstruction planning create 

conditions conducive to innovation in this field. 

Key contributions of this paper include a 

comprehensive review of computer vision 

models applicable to damage assessment, 

expanded analysis of GIS integration 

workflows that transform raw detections into 
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actionable intelligence, identification of 

research gaps and challenges specific to 

Ukrainian architectural contexts, and proposal 

of a complete AI→Damage Index→GIS [12, 

18] operational pipeline suitable for practical 

implementation. 
Future research should focus on 

developing open-source training datasets 

documenting Ukrainian building types and 

damage patterns, standardizing Damage Index 

calculation methodologies to enable cross-

regional comparison and data integration, 

validating automated assessment accuracy 

through systematic comparison with expert 

field surveys, and integrating multiple 

complementary data sources including satellite 

imagery, UAV reconnaissance, ground 

photography, and social media reports into 

unified operational systems supporting 

reconstruction planning and resource 

allocation. 
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Картографування пошкоджень міської 

інфраструктури на основі штучного 

інтелекту 

 

Коcтянтин Маринський 

 

Анотація. Оцінка пошкоджень міської 

інфраструктури є критично важливою для 

поставарійного відновлення, розподілу ресурсів 

та планування міської стійкості. Ручні інспекції 

є повільними, суб'єктивними та небезпечними. 

Дане дослідження представляє розширений 

огляд підходів комп'ютерного зору (CV) та 

геоінформаційних систем (ГІС) для 

автоматизованого виявлення пошкоджень з 

кількох джерел. Проаналізовано методи 

класифікації, детекції, сегментації та виявлення 

змін. Запропоновано розширений конвеєр 

ШІ→Індекс Пошкоджень→ГІС. Розглянуто 

виклики, специфічні для українських міст. 

Стаття надає комплексну основу для 

впровадження автоматизованих систем 

картографування пошкоджень. 

Ключові слова: комп'ютерний зір, ГІС, 

оцінка пошкоджень, сегментація, БПЛА-

зображення, планування реконструкції.

 

 


