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Abstract. Urban infrastructure = damage
assessment is essential for post-disaster recovery,
resource allocation, and city resilience planning.
Manual inspections are slow, subjective, and unsafe.
This study presents an extended review of computer
vision (CV) and geographic information system
(GIS) approaches for automated multi-source
damage detection. Methods for classification,
detection, segmentation, and change detection are
analyzed. An expanded Al—Damage Index—GIS
pipeline is proposed. Challenges specific to
Ukrainian cities are examined. The paper provides a
comprehensive  foundation for implementing
automated damage-mapping systems.

Keywords: computer vision, GIS, damage

assessment,  segmentation, = UAV  imagery,
reconstruction planning.
INTRODUCTION

Urban environments are highly vulnerable to
large-scale disasters, including earthquakes,
industrial explosions, and, most notably for
Ukraine, warfare-related destruction [12, 20].
Rapid evaluation of infrastructure damage is
critical for emergency response, reconstruction
scheduling, prioritization of repair budgets, and
risk mitigation [7, 13].

Traditional manual inspections pose several
problems: low scalability, dependence on expert
availability, safety risks, subjective assessments,
and delays in compiling city-wide reports [6,
12].

Al-based approaches can process thousands
of images per hour and produce consistent,
quantitative metrics. When combined with GIS
layers such as building footprints, road
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networks, and population density, the results
support municipal decision-making[15].

MODERN METHODS OF DAMAGE
ASSESSMENT

In this section, we examine the primary
computer vision techniques applied to
infrastructure damage assessment. Each method
offers distinct advantages depending on the
specific requirements of the assessment task and
available data sources.

Classification models assign a global
severity category to an entire image. Typical
labels include no damage, minor, moderate,
severe, and destroyed. Common architectures
such as ResNet, EfficientNet, and MobileNet [1,
8] offer fast processing and low resource usage.
However, these models lack spatial
understanding of damage distribution within the
image, limiting their utility for detailed damage
mapping.

Object detection models identify and
localize specific damage components such as
cracks, facade failures, debris piles, and roof
collapse. Modern detectors like YOLOVS,
YOLO-NAS, Faster R-CNN, and DETR [5, 16]

59


https://doi.org/10.32347/st.2025.4.1207

Information technologies

provide bounding boxes and confidence scores
for each detected element. While these models
enable rapid localization of damaged areas
within complex urban scenes, they do not
provide precise geometric boundaries of the
damaged regions.

Semantic segmentation provides pixel-level
classification of damaged versus undamaged
regions, which is essential for calculating exact
damage area. Widely used architectures include
U-Net, U-Net++ [3, 4, 9], DeepLabv3+, Mask
R-CNN, and the recent Segment Anything
Model (SAM). Segmentation forms the
backbone of quantitative damage analysis by
enabling precise measurement of affected
surfaces and providing the foundational data for
Damage Index calculation.

Change detection analyzes differences
between pre-event and post-event images,
making it particularly useful when baseline
imagery exists from sources such as Google
Street View or satellite archives. Common

models include Siamese Networks,
Transformer-based change detection
architectures, and Temporal CNNs. This
approach enables direct quantification of

damage by comparing identical locations across
time, eliminating ambiguity from pre-existing
structural deterioration.

COMPUTER VISION TECHNIQUES

The evolution of deep learning architectures
has significantly impacted damage assessment
capabilities. Convolutional Neural Networks
have dominated computer vision tasks for the
past decade, establishing robust feature
extraction methods for image analysis [3, 5].
However, Vision Transformers now provide
superior contextual modeling through self-
attention mechanisms and outperform CNNs on
large-scale datasets [11]. Transformers can
capture long-range dependencies in images,
which proves valuable for understanding
damage patterns across entire building facades
or urban blocks.

Future damage assessment systems will
increasingly rely on multimodal approaches that
merge multiple data sources [17, 19]. These
systems integrate visual imagery with metadata
such as GPS coordinates and elevation data, GIS
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context layers providing urban infrastructure
information, and text descriptions from field
reports. This multimodal fusion enables more
robust and comprehensive damage
characterization by leveraging complementary
information sources that individually may be
incomplete or ambiguous.

A critical component of standardized
damage assessment is the Damage Index, a
scalar metric representing normalized severity
on a scale of 0-1 or 0-100 [15]. The DI
incorporates multiple factors: percentage of
structural surface damaged, presence and
volume of debris, facade deformation
magnitude, roof penetration area, and contextual
GIS-based weighting that accounts for building
importance, location, and structural type. The
Damage Index  enables  cross-regional
comparison and objective prioritization of
reconstruction efforts, transforming qualitative
visual assessments into quantitative decision-
making metrics.

ROLE OF GIS IN DAMAGE MAPPING

Geographic Information Systems provide
the spatial intelligence infrastructure needed for
effective  reconstruction  planning.  The
integration of computer vision outputs with GIS
platforms transforms raw damage detections
into actionable operational intelligence.

Georeferencing aligns computer vision
outputs with authoritative building footprints
and cadastral data, ensuring accurate spatial
localization of damage assessments. This
process requires careful coordinate
transformation and quality control to maintain
positional accuracy across different data sources
and coordinate systems.

Aggregation  capabilities =~ summarize
Damage Index values at multiple spatial scales,
from individual buildings to grid cells,
neighborhoods, districts, and entire
municipalities. This multi-scale analysis enables
decision-makers to understand damage patterns
at the appropriate level of detail for their specific
planning needs.

Heatmap generation creates intuitive visual
representations of damage density, allowing
rapid identification of the most severely affected
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areas for priority response and resource
allocation [12, 13]. These

visualizations = communicate = complex
spatial patterns effectively to stakeholders who
may lack technical expertise in geospatial
analysis.

Urban analytics functions leverage the
integrated damage and GIS data to support
advanced  decision-making.  Applications
include population exposure estimation by
overlaying damage maps with residential
density data, road blockage assessment for
emergency vehicle routing, proximity analysis
identifying damage near critical facilities such
as hospitals and schools, and multi-criteria
prioritization of infrastructure repair based on
structural importance, population served, and
economic impact.

KEY CHALLENGES

Despite significant advances in Al-based
damage mapping, several challenges must be
addressed for successful implementation in
Ukrainian cities.

Dataset scarcity remains a fundamental
obstacle [8, 20]. Limited training data exists for
Ukrainian architectural styles, particularly
Soviet-era panel buildings with unique
structural  characteristics  that  respond
differently to damage compared to Western
construction types. Developing representative
training datasets requires extensive field
documentation and expert annotation.

Image source variability creates technical
challenges for model generalization. Inputs
range from high-altitude satellite imagery to
low-altitude UAV footage and ground-level
photographs, each  exhibiting different
resolutions,  viewing  angles,  lighting
conditions, and atmospheric effects. Models
must maintain consistent performance across
this heterogeneous input space.

Ambiguous damage signatures complicate
automated classification. Weathering, shadows,
architectural  features, and pre-existing
deterioration can be misclassified as disaster
damage. Distinguishing recent damage from
historical ~deterioration requires temporal
context that may not always be available.
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Coordinate system mismatches require
careful geometric processing. Transforming
between WGS84, UTM, and local coordinate
systems while maintaining spatial accuracy
demands robust geodetic procedures and
quality control workflows.

Lack of standardized Damage Index
methodologies across organizations and
countries makes it difficult to compare
assessments and integrate data from multiple
sources. International collaboration is needed to
establish consistent calculation frameworks and
validation protocols.

The structural uniqueness of Soviet-era
panel buildings presents a specialized
challenge. These prefabricated concrete
structures exhibit failure modes distinct from
cast-in-place  or masonry  construction,
requiring dedicated training data and
potentially specialized model architectures.

PROPOSED PIPELINE

We propose an integrated processing
pipeline that transforms raw imagery into
actionable damage intelligence through
sequential processing stages [6, 12].

The input stage accepts data from multiple
sources: satellite imagery providing pre-event
and post-event coverage at medium to high
resolution, UAV imagery captured at low
altitude delivering detailed building-level data
with  oblique viewing angles, ground
photographs from first responders and civilians
offering close-range damage documentation,
and archived baseline imagery from Google
Street View enabling temporal change
detection.

The computer vision module processes
these diverse inputs through multiple analysis
pathways. Semantic segmentation generates
pixel-level damage masks quantifying affected
surface area. Object detection identifies and
localizes specific damage features such as
facade collapse, debris accumulation, and
structural deformation. Classification assigns
overall severity levels to entire structures or
image regions. Change detection performs

temporal comparison between pre-event and
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post-event imagery to isolate damage from pre-
existing conditions.

Damage Index calculation integrates
outputs from the computer vision module with
contextual information. Weighted area ratio
scoring quantifies the proportion of structural
surface exhibiting damage. Structural failure
metrics assess the severity of detected damage
features. GIS-based contextual factors adjust
the base damage score based on building
importance, population served, and criticality to
urban infrastructure networks.

The GIS integration layer performs
geospatial mapping to associate damage
assessments with specific structures in the
urban cadastre. Heatmap generation visualizes
damage density at multiple spatial scales.
Reconstruction priority zoning identifies areas
requiring immediate intervention based on
damage severity, population exposure, and
infrastructure criticality.

VISUAL EXAMPLES OF URBAN DAMAGE

To illustrate the practical application of the
proposed damage assessment pipeline, we
present representative examples of
infrastructure damage from Ukrainian cities
affected by recent military operations.

Figure 1 presents a  schematic
representation of the complete damage
assessment pipeline, showing the flow from
multiple input sources through computer vision
processing, Damage Index calculation, and
final GIS integration stages.

Figure 2 demonstrates typical facade
damage patterns observed in residential
buildings in Kyiv. The image shows
characteristic destruction including broken
windows, partial wall collapse, and exposed
reinforcement  structures resulting from
explosive impact. This type of damage is
particularly common in multi-story panel
buildings constructed during the Soviet era.
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INPUT SOURCES

« Satellite imagery (pre/post-event, high-res)
« UAV (drone) images from low altitude

« Ground photos from responders and civilians
« Google Street View (baseline imagery)

Y
COMPUTER VISION MODULE

« Semantic segmentation (pixel-level masks)
« Object detection (fagade collapse, debris)
« Classification (severity level)

« Change detection (temporal comparison)

Y

DAMAGE INDEX

« Weighted area ratio scoring
« Structural failure metrics
« GIS-based contextual factors

Y

GIS LAYER

Geospatial mapping
Heatmap generation
Reconstruction priority zoning

Fig. 1. Al-based damage assessment pipeline
showing integration of multiple data sources

Fig. 2. Facade destruction in residential building,
Kyiv (example of moderate to severe damage
classification)

Figure 3 illustrates more severe structural
failures documented in Kharkiv, including
partial collapse of load-bearing panel walls,
destroyed floor sections, and extensive
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structural cracking. These damage patterns
represent the most severe category in
classification systems and require immediate
structural stabilization interventions.

Fig. 3. Severe structural damage with partial
collapse, Kharkiv (example of severe to
destroyed classification)

These visual examples demonstrate the
range of damage severity levels that the
proposed Al-based assessment system must
accurately classify and quantify. The variability
in damage patterns, viewing angles, lighting
conditions, and surrounding context illustrates
the technical challenges discussed in the
previous sections.

IMPLEMENTATION
CONSIDERATIONS

Successful deployment of Al-based
damage mapping systems requires addressing
several practical considerations beyond
algorithm development.

Computing infrastructure must support
efficient processing of large image datasets.
Cloud-based GPU resources can provide
scalable computation for initial processing,
while edge computing on UAV platforms
enables real-time damage assessment during
reconnaissance missions.

Model training requires diverse datasets
representing the full range of Ukrainian
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architectural styles and damage patterns.
Transfer learning from existing damage
datasets can accelerate development, but
domain-specific fine-tuning remains essential
for optimal performance.

Validation procedures must compare
automated assessments against expert ground-
truth data collected through traditional field
surveys. Establishing quality metrics and
acceptable  error  thresholds  requires
collaboration between computer scientists and
structural engineering experts.

Integration with existing municipal GIS
systems ensures compatibility with local
planning workflows and data standards. APIs
and data exchange formats must accommodate
the technical constraints of legacy systems
while enabling modern spatial analysis
capabilities.

User interface design must present
complex spatial analysis results clearly to
decision-makers who may lack technical
expertise in remote sensing or geospatial
analysis. Interactive web-based dashboards
with intuitive visualization and filtering
capabilities facilitate effective use of damage
intelligence.

CONCLUSIONS

Al-based approaches offer unprecedented
opportunities to automate infrastructure
damage assessment at city scale. When
integrated with  Geographic Information
Systems, these technologies enable rapid,
objective, and data-driven reconstruction
planning that would be impossible through
traditional manual inspection methods.

The current situation in Ukraine provides a
unique real-world environment for developing
and validating damage mapping methodologies
that will have global applicability. The large
scale of infrastructure damage, availability of
multi-temporal imagery, and urgent need for
effective  reconstruction planning create
conditions conducive to innovation in this field.

Key contributions of this paper include a
comprehensive review of computer vision
models applicable to damage assessment,

expanded analysis of GIS integration
workflows that transform raw detections into
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actionable intelligence, identification of
research gaps and challenges specific to
Ukrainian architectural contexts, and proposal
of a complete Al—»Damage Index—GIS [12,
18] operational pipeline suitable for practical
implementation.

Future research should focus on
developing open-source training datasets
documenting Ukrainian building types and
damage patterns, standardizing Damage Index
calculation methodologies to enable cross-
regional comparison and data integration,
validating automated assessment accuracy
through systematic comparison with expert
field surveys, and integrating multiple
complementary data sources including satellite
imagery, UAV reconnaissance, ground
photography, and social media reports into

unified operational systems supporting
reconstruction  planning and  resource
allocation.
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Kaprorpadysanns nomkonxeHp MicbKol
iH()paCTPYKTYypH HA OCHOBI IITY4YHOTO
iHTeeKTY

Kocmanmun Mapuncokuii

AHoramist. OIliHKa TTOMKOMKEHb MiCHKOT
iHQPACTPYKTypU € KPUTUYHO BAXKIUBOKW IS
MTOCTaBapiiHOTO BiTHOBIEHHS, PO3IOALITY PECYPCiB
Ta TUTaHYBaHHS MICBKOI CTIMKOCTI. Py4Hi iHCHeKIii
€ TIOBUIBHUMHU, Cy0'€KTHBHUMHU Ta HEOS3MEUHUMU.
Jlane JmOCIHiPKEHHS TIPEACTaBISE PO3IIUPCHUN
oA mimxomiB komm'torepHoro 3opy (CV) Ta
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reoinpopMaritHux cUCTEM (T'IC) JUTSt
ABTOMAaTHU30BAaHOTO BUSBJICHHS TMOIIKOMKEHb 3
KiTbKOX  mkepen.  IlpoaHamizoBaHo — MeTOAM

knacudikarii, JSTEKIIii, CCTMEHTAIlii Ta BUSBJICHHS
3MiH. 3alpONOHOBAHO PO3IIUPCHUN  KOHBEEP
—TIanexc Ilomkomkerp—IIC. Po3srmaryTo
BUKIIMKH, crHenupidHi s yKpaiHCPKUX MICT.
Crarrs  Hajae  KOMIUICKCHY  OCHOBY  JUIs
BIIPOBAKCHHS aBTOMATH30BaHUX CHCTEM
KapTorpadyBaHHS ITOMIKO/[KECHb.

Karouosi ciaoBa: xomm'torepuuit 3ip, ['IC,
OIlilHKa IIONIKOMKEHb, cermentamiss, BITJIA-
300paXeHHS, TUNIAHYBaHHS PEKOHCTPYKIIIi.
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