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Abstract. This paper presents the development 

of an adaptive software component for forecasting 

the energy consumption of electric vehicles along 

planned routes. It includes a conceptual framework, 

architectural design, and modular software 

composition, introducing mathematical models for 

managing energy consumption with a model-based 

design approach for precise predictions and 

optimization. The importance of data sources such 

as route information, vehicle condition, and driver 

behavior is emphasized to create a comprehensive 

state vector for energy optimization. 

Following ISO 26262 and A-SPICE 3.1 

standards, the implementation uses a model-based 

approach with Simulink and aligns with the V-

Model for rigorous validation. The methodology 

details segmenting routes and optimizing energy 

consumption for each segment, considering driving 

style and environmental conditions. The gradient 

search method adjusts energy consumption to 

minimize usage while maximizing comfort and 

ensuring route completion. 

This research lays the groundwork for future 

advancements in predictive energy management 

systems for electric vehicles, with potential real-

world applications. Future work will focus on 

refining predictive models, exploring machine 

learning for improved accuracy, and integrating 

real-time data from connected vehicle technologies 

for dynamic optimization. 
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INTRODUCTION 

 

Modern cars are complex networks of 

computing and control devices, each with its 

own topology that imposes specific properties, 

limitations, and norms. This distributed system 

for data collection, communication, and control 

enables the formation of a detailed state vector, 

accurately describing the car's condition for 

effective technical management decisions. 

Simultaneously with the development of 

control means and internal communication of 

the car, its energy system also develops. This is 

particularly relevant for electric vehicles 

equipped with mobile power plants or electric 

batteries. 

The advantages of using electric power 

elements for vehicle movement are significant 

and varied. Firstly, electric vehicles (EVs) help 

reduce or even eliminate fuel costs, as 

electricity is cheaper and more stable in price 

compared to gasoline [1], [2]. Secondly, EVs 

contribute to environmental conservation by 

producing fewer emissions than their gasoline 

counterparts, thus aiding in the fight against 

climate change [3], [4]. Additionally, electric 

vehicles support energy independence, 

reducing reliance on imported oil and 

promoting the use of locally sourced renewable 

energy [1], [2]. 
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However, there are still unresolved issues 

related to the vehicle's range on electric 

traction. Modern vehicles are limited in their 

range to approximately 100-450 kilometers 

(about 279.62 mi) per charge, depending on the 

model and battery capacity [3], [12]. 

The issue of increasing the range is 

addressed by several approaches, including 

improvements in battery technology, 

development of more efficient power 

management systems, and the expansion of 

charging infrastructure [2], [4]. Another 

approach to increasing the vehicle's range is to 

introduce methods of energy consumption 

prediction with the search for an optimal 

consumption strategy for each energy 

consumer. This strategy also considers the 

dependence of expenses on driving style. 

Therefore, predicting the energy 

consumption of a vehicle for moving along a 

given trajectory is the subject of this study. The 

object of the research is the development of 

application-level software (business logic) for 

predicting energy consumption and forming a 

system of recommendations for the driver. 

The task of minimizing a vehicle's energy 

consumption, as well as the task of predicting 

its range, is primarily a task for battery 

engineers and component designers of the car 

both in its details and as a finished product. But 

secondly, it is also a task for companies that 

develop software, especially in connection with 

the concept of building a Software-defined 

vehicle. Thus, N-iX corporation, within which 

these studies were conducted, approached the 

described subject through the prism of 

Predictability of energy consumption and 

energy management system, which is a 

software solution for vehicle energy 

management. 

 

PROBLEM STATEMENT 

 

The objective of this research is the 

development of a composition of software tools 

and individual software components for a 

vehicle that enables the optimization of the 

electrical consumption scenario of each critical 

node of the vehicle. This ensures the 

achievement of the planned route with the 

maximum level of comfort. 

It should be noted that the problem 

involves solving a multi-criteria optimization 

task of a bi-criteria optimization of a multi-

parameter function with nonlinear 

dependencies between parameters. 

Two criteria are proposed: 

1. Ride comfort (minimizing the deviation 

between the ride properties set by the driver and 

the actual battery capacity allocated to each 

consumer). 

2. Minimization of energy consumption 

(minimizing the energy consumption of each 

analyzed vehicle energy consumer). 

Regarding energy consumers, the aim is to 

create a software composition that allows for 

the customization of energy consumers. The 

basic composition should manage the main 

consumers, namely Powertrain, HVAC, 

Suspension, Battery Climate Control System, 

and expenses related to driving style. 

Additional consumers can be added by creating 

corresponding software components and 

adding them to the composition. 

Regarding information sources, several 

information sources are needed for energy 

management, which can be grouped as follows: 

- Information about the route; 

- Information about the vehicle's 

condition; 

- Information about the driver and driving 

style. 

All three basic information sources create 

a state vector of the vehicle. This state vector, 

together with the criteria for optimizing energy 

consumption, forms the problem statement for 

nonlinear optimization. Solving this problem 

leads to obtaining an optimal energy 

consumption scenario. 

 

MATERIALS AND METHODS 

 

According to the defined object and subject 

of the research, as well as the aim of the work, 

the outcome is the creation of a software 

composition that can be applied as business 

logic and function as an application within the 

ECU. The composition should meet the design, 

documentation, construction, testing, and 

integration requirements according to norms, 

standards, frameworks, and guidelines 

applicable in the automotive sector. 
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This composition includes an ASIL A class 

component. The SDLC V-Model and ISO 

26262 [15] and ISO 33050 [16] standards were 

applied for its development. Project measures, 

as well as processes during preparation, 

development, and support, complied with the 

A-SPICE 3.1 framework. Technologically, they 

correspond to level 3 (Established). The teams 

applied the SAFe 6 project management 

methodology. 

A Model-based approach based on 

Simulink (license 41148027) was used. This 

approach was employed from the requirement 

engineering stage to the integration stage. The 

software component includes means for 

interacting with the driver. For demonstrating 

the interaction, a virtual reality solution based 

on Carla Simulation was created. Physical 

steering wheels and pedals from Logitech were 

used for driver input. C99 and Python layers 

were used to integrate Carla with Simulink and 

the steering wheel and pedals with Simulink. 

For obtaining route data and information 

about road temperature and quality, Google 

Maps services were used. Python scripts were 

employed to link Google Maps with Simulink. 

The MathWorks ecosystem, including 

Simulink, System Composer, Requirement 

Toolbox, Embedded Coder, Advisor, Simulink 

Test, Powertrain, and Instrument Control 

Toolbox (license No. 41148027), was used for 

building the composition, components, 

integration, and requirement engineering. 

 

THE TASK OF FINDING THE OPTIMAL 

ENERGY CONSUMPTION SCENARIO 

 

There are several approaches to 

formulating the task of finding the optimal 

energy consumption scenario. For example, [8], 

[9] define it as minimizing energy expenditure. 

In contrast, [10], [11] use Markov chains to 

predict step-by-step expenses. 

At N-iX Corporation, we approached this 

task creatively. We decompose the entire 

vehicle route into segments (the length of the 

segment is chosen dynamically, depending on 

changes in its characteristics. For example, if 

the road is straight, without significant changes 

in road angle or temperature, we consider this 

part of the route as one segment). After 

decomposition, we request the required current. 

This request is made to the consumption model, 

which we describe for each consumer. Thus, we 

estimate consumption for each segment of the 

route we need to cover. Then we request the 

driver’s profile. Based on statistical data, we 

understand the driver’s driving style. We 

interpret this style as an over-expenditure 

coefficient for each consumer. Next, having the 

consumption values for all consumers for all 

route segments, we can estimate whether the 

battery charge will be sufficient to cover this 

route. 

Obviously, the route can be covered 

quickly or slowly, with the air conditioner at 

maximum power or turned off, using adaptive 

suspension, or switching it to passive mode. 

And it is also obvious that all this changes 

energy consumption. Therefore, the task of 

finding the optimal energy consumption 

scenario is to find the operating modes of each 

consumer so that we can cover the planned 

route. 

It is important to note that the best chance 

of reaching the planned route is to turn off 

everything that is possible and switch the 

powertrain to the highest economy mode. But 

this is not a comfortable ride. Therefore, we 

introduced another criterion – maximizing 

comfort. 

Thus, if we understand that we can reach 

the destination, and if the air conditioner 

operates in normal mode (provided that the 

driver wants it to be turned on in normal mode), 

we will propose to turn it on in this mode. If we 

cannot reach the destination in this mode, we 

will propose a balanced combination of modes 

for all consumers to evenly reduce comfort so 

as not to critically reduce it anywhere. 

And, obviously, if we estimate the impossibility 

of covering this route at all, then after the 

appropriate calculation, we notify the driver.  

Thus, the mathematical model for finding 

the optimal energy consumption scenario is 

proposed as follows: 

1. Minimization of energy consumption (𝐸 ): 

a. Minimization of the total energy 

consumption of each component. 
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b. We define the function E as the sum of 

the energies consumed by each 

component: 

𝐸 = 𝐸𝑝𝑜𝑤𝑒𝑟𝑡𝑟𝑎𝑖𝑛 + 𝐸𝐻𝑉𝐴𝐶 + 𝐸𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛
+ 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝐶𝐶 + 𝐸𝑑𝑟𝑖𝑣𝑒𝑟 

 

2. Maximization of comfort (𝐶 ): 

a. Minimization of the deviation between 

the ride properties set by the driver and 

the actual battery capacity allocated to 

each consumer. 

b. We define the comfort function (𝐶 ): 

 

𝐶 = − ∑ (𝐸𝑖̇   − 𝐸𝑖)
2max(𝑖)

𝑖 , 

 

where �̇�𝑖 - is the desired energy consumption 

set by the driver for the i-th component, and 𝐸𝑖  
- is the actual energy consumption for the i-th 

component. 

Then, the Lagrange function for this task can be 

written as follows: 

 

𝐿(𝐸, 𝜆)  =  𝐸  +  𝜆(𝐶 − 𝛼) 
 

where 𝜆 - is the Lagrange multiplier, and 𝛼 - is 

the constant that determines the balance 

between energy consumption and comfort. 

 

We form a system of equations. So, to find 

optimal values, it is necessary to find the partial 

derivatives of the Lagrange function with 

respect to each variable and set them to zero: 

 
𝜕𝐿

𝜕𝐸𝑖
= 0,  

𝜕𝐿

𝜕𝜆
= 0   (1) 

 

For the segment of the route, we form a current 

request: 

 

𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡  =   ∑
𝐸𝑖
𝑈𝑖

max(𝑖)

𝑖

 

 

where 𝑈𝑖 - is the network voltage for the i-th 

component. 

Driver profile consideration is carried out as 

follows: 

 

𝐸𝑑𝑟𝑖𝑣𝑒𝑟   =  𝛽  ∑ 𝐸𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑎𝑙𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑠𝑒𝑔𝑚𝑒𝑛𝑡

 

 

where 𝛽 - is the coefficient that accounts for the 

driver’s driving style. 

 

OPTIMIZATION OF CONSUMPTION FOR 

EACH SEGMENT OF THE ROUTE 

 

The objective function will be as follows: 

 

𝑀𝐼𝑁 𝐸  =  𝐸𝑝𝑜𝑤𝑒𝑟𝑡𝑎𝑟𝑖𝑛 +  𝐸𝐻𝑉𝐴𝐶 + 𝐸𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛
+ 𝐸𝑑𝑟𝑖𝑣𝑒𝑟 

 

with constraints: 

- Constraints on energy consumption for each 

component: 

𝐸𝑖 ≤  𝐸𝑚𝑎𝑥,𝑖,  𝑖  =  1, … , 𝑛 

- Constraints on total energy consumption: 

∑𝐸𝑖 ≤𝐸𝑡𝑜𝑡𝑎𝑙

𝑛

𝑖=1

 

- Constraints on comfort reduction: 

𝐶  =   −∑(𝐸𝑖 − 𝐸𝑡𝑜𝑡𝑎𝑙̇ )
2

𝑛

𝑖=1

≥ 𝐶𝑚𝑖𝑛 

Finding optimal values 𝐸,  𝜆  is based on 

solving equation (1), which can be presented in 

the following form: 

 
𝜕𝐿

𝜕𝐸𝑖
=

𝜕

𝜕𝐸𝑖
(𝐸 + ∑ 𝜆𝑗(𝐸)

𝑚
𝑗=1 − 𝑏𝑖) = 0      (2) 

for constraints:  𝑔𝑗(𝐸) − 𝑏𝑗 = 0,  𝑗 = 1,… ,𝑚 . 

 

This completes the formulation of the 

optimization task, ensuring a balanced 

approach to minimizing energy consumption 

while maximizing driver comfort. 

 

FORMATION OF THE SOFTWARE 

COMPOSITION 

 

According to the A-SPICE framework, the 

software development process includes a series 

of preliminary stages. These stages will be 

omitted in this publication as they fall outside 

the scope of its scientific interest. The system 
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engineering process (SYS A-SPICE group) is 

partially considered here, as well as the ENG 

group, in accordance and proportionate to the 

relevance of the subject of the work. The SUP 

and MNG groups are completely omitted in the 

publication. 

 

DISTINGUISHED COMPOSITION 

COMPONENTS 

 

The composition is divided into three 

groups of components. It is assumed that all 

components will be deployed on a single ECU. 

First Group - Core Composition. Contains 

components that are not subject to 

customization. This group of components 

includes: 

- Prediction SWC; 

- Powertrain SWC; 

- DriverProfile SWC. 

Second Group – Plugins. Contains 

mathematical models of consumers. It allows 

for the current request to the power source. It 

also allows for modeling current consumption 

under different operating modes in search of the 

optimal combination. Each of the plugins has 

two subcomponents. The first subcomponent is 

used for iterating through energy consumption 

modes in search of an optimal configuration. 

The second subcomponent provides a current 

request in the selected mode depending on the 

operating conditions. This group's software 

components allow for customization according 

to the vehicle's specifications. Typical 

representatives of the second group of software 

components include: 

- ClimatControl SWC; 

- Suspension SWC; 

- ExternalTemperature SWC; 

- TirePressure SWC. 

Third Group – Wrappers. They are used for 

software testing, debugging, and demonstrating 

its operation. Typical representatives of 

software components in this group include: 

- GoogleMap SWC; 

- HMI SWC; 

- Modem SWC. 

The proposed composition of software 

components is shown in Fig. 1. 

 
Fig. 1. Software Composition 

 

While changing plugins should not affect 

the composition, the entire second group of  

 

software components is grouped into the 

Plugins SWC component, as shown in Fig. 2.
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Fig. 2. Decomposition of Plugins into a Separate Group 

 

A typical component of the composition is 

composed according to the MISRA AC GMG 

[13] or MAAB [14] guidelines. Its structure 

includes two subcomponents mentioned earlier 

(one for finding a new consumption plan using 

the gradient descent method, and the other for 

performing predictions of expenses for 

subsequent parts of the route). The typical 

structure of such a software component is 

shown in Fig. 3.

 
Fig. 3. Typical Structure of a Software Component with Two Separate Subcomponents 
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The Prediction SWC and DriverProfile 

SWC software components are shown in 

Figures 4 and 5, respectively. 

The structure of the Prediction SWC 

includes two subcomponents. One performs the 

tasks of estimating costs for the entire route that 

the car still has to cover. The second 

subcomponent searches for the optimal energy 

consumption scenario according to system (2). 

The structure of the DriverProfile SWC 

includes logic for accruing and writing off 

"penalties" imposed on the driver for ignoring 

recommendations. Penalties are deducted for 

following these recommendations. The accrual 

and deduction model is hysteresis-based and is 

set by interpolation tables. 

The mathematical model of DriverProfile 

SWC is shown below. 

1. Penalty Accrual: 

 

𝑃𝑡+1 = 𝑃𝑡 + 𝛼𝐸𝑡 

 

2. Penalty Deduction: 

𝐸𝑡 =
1

2
∑(𝑟𝑖  − 𝑎𝑖)

2

𝑛

𝑖 = 1

 

3. Backpropagation Update: 

 

𝑃𝑡+1 = 𝑃𝑡 − 𝛽𝑅𝑡 
 

𝜔𝑡+1 = 𝜔𝑡 − 𝜂
𝜕𝐸𝑡
𝜕𝜔

 

 

4. Hysteresis Effect: 

 

𝑃𝑡+1 =  {{𝑃𝑡 + 𝛼𝐸𝑡   𝑖𝑓 𝐸𝑡 

>  𝛿} 𝑂𝑅 {𝑃𝑡
− 𝛽𝑅𝑡 𝑖𝑓 𝐸𝑡  ≤  𝛿}} 

For driver from 

𝐷  =  {𝑑1,  𝑑2,   …  ,  𝑑𝑚} 
 

Fig. 4. Prediction SWC Software Component Model 

Fig. 5. DriverProfile SWC Software Component Model (the main subsystem only) 
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The mathematical model, which is part of 

the Powertrain SWC, cannot be disclosed due 

to NDA. 

 

SETTING TRIGGERING TIME OF 

COMPONENTS WITH EACH OTHER 

 

Time-sampling for all SWC components is 

crucial for ensuring synchronized and efficient 

system operation. Each SWC component 

triggers at specific intervals, which are recorded 

as time samples. These time samples help in 

understanding the interaction and behavior of 

components under different operating 

conditions. 

In the histogram (Figure 6), we observe the 

distribution of triggering times for various 

components: 

- Prediction SWC triggers primarily between 

10-13 milliseconds. 

- Powertrain SWC triggers mainly between 

15-18 milliseconds. 

- DriverProfile SWC triggers mostly between 

19-22 milliseconds. 

- ClimatControl SWC triggers predominantly 

between 25-28 milliseconds. 

- Suspension SWC triggers primarily between 

30-33 milliseconds. 

- ExternalTemperature SWC triggers mainly 

between 35-38 milliseconds. 

- TirePressure SWC triggers mostly between 

40-43 milliseconds. 

- GoogleMap SWC triggers predominantly 

between 45-48 milliseconds. 

- HMI SWC triggers primarily between 50-53 

milliseconds. 

- Modem SWC triggers mainly between 55-58 

milliseconds. 

 
Fig. 6. Timesample histogram 

 
This detailed time-sampling allows for 

precise coordination and optimization of 

component interactions, ensuring that the 

system operates smoothly and efficiently. By  

analyzing these time samples, we can identify 

potential areas for improvement in 

synchronization and performance, leading to a 

more robust and reliable system. 
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COMPONENTS FOR ENVIRONMENT 

VIRTUALIZATION AND STUB 

REALIZATION 

 

The construction of these components 

significantly depends on the available software 

licenses. By basing solutions on Simulink, an 

alternative approach can be taken. Since this 

software section is more for demonstrating 

capabilities rather than being deployed as a 

product, certification is not required. Therefore, 

the use of third-party software is acceptable. 

For external solutions such as GoogleMaps, 

steering wheel interfaces, Carla simulation, or 

practically any solution outside the MATLAB 

ecosystem, it is proposed to use the Instrument 

Control Toolbox, which includes a UDP toolkit. 

This type of task is effectively managed using 

sockets. 

 

ACHIEVING REAL-TIME 

 

Achieving real-time operation is 

challenging. Simulink does not inherently 

support real-time execution as the simulation 

time of the system can differ from physical 

time. Real-time performance can be achieved 

after compiling the software product and 

running it as an application. 

TESTING AND INTEGRATION 

 

According to the V-Model process, testing is 

inseparable from the development process. 

Building a testing process for ASIL-A 

according to ISO 26262-6 [15] includes five 

stages, conducted sequentially. Stages and 

completion criteria for this composition are 

provided in Table 1.  

In accordance with ISO 26262-6 [15] 

recommendations, the processes are conducted 

using certified tools or subject to further 

verification. Therefore, in this work, it is 

proposed to use the verified Simulink Test 

toolkit with additional instruments such as Test 

Manager, Coverage, and Reports, to remain 

within a single software development 

ecosystem. 

The completion criteria for the testing stages 

are proposed as indicated in Table 2. 

The stages "Validation of composition on 

virtual target (ViL)" and "Testing on real ECU 

(ViL)" are not completed to date. Their impact 

on the product will be published additionally. 

Accordingly, integration as an ECU application 

is not the subject of the current publication. 

Table 1. Testing stages of software composition 
 

Stage Metrics Description 

Static analysis of 

Simulink model 

Diagnostic Coverage (DC), 

Single Point Fault Metric (SPFM) 

Model analysis to identify defects and potential 

problems. Measuring code coverage and 

diagnostic efficiency for testing evaluation. 

Model unit 

testing (SiL) 

% of tests executed, Common 

Cause Fault Metric (CCFM) 

Executing model-level tests based on a 

simulation environment. Measuring the 

percentage of successfully executed tests and 

the metric for partial failures. 

Integration 

testing of 

components 

(HiL) 

% of integrated components, 

Probabilistic Metric for random 

Hardware Failures 

Testing interactions between different 

components at the hardware level. Evaluating 

the percentage of successfully integrated 

components and integration time. 

Validation of 

composition on a 

virtual target 

(ViL) 

DC, Failures In Time (FiT) 

Testing the entire composition on a virtual 

platform. Measuring diagnostic efficiency and 

the number of failures per trillion hours. 

Testing on a real 

ECU (ViL) 
FiT, Latent Fault Metric (LFM) 

Testing the composition on a real ECU to 

verify stability and identify defects. Measuring 

the number of failures per trillion hours and 

latent faults. 
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Table 2. Completion criteria for testing stages 

 

Testing stage Completion criteria 

Static analysis of Simulink model (FMEDA) 

Completion of the analysis when DC ≥ 90% and 

SPFM ≥ 99%. All identified critical defects must 

be corrected and confirmed by repeated analysis. 

Model unit testing (SiL) 

Completion of testing when % of successful 

tests ≥ 95% and CCFM ≤ 1 FIT. All critical 

defects must be corrected and confirmed by 

repeated tests. 

Integration testing of components (HiL) 

Completion of testing when % of integrated 

components ≥ 95% and PMHF ≤ 10 FIT. All 

identified critical defects must be corrected and 

confirmed by repeated tests. 

Validation of composition on virtual target (ViL) 

Completion of validation when DC ≥ 95% and 

FIT ≤ 10 per trillion hours. All critical defects 

must be corrected and confirmed by repeated 

tests. 

Testing on real ECU (ViL) 

Completion of validation when DC ≥ 95% and 

FIT ≤ 10 per trillion hours. All critical defects 

must be corrected and confirmed by repeated 

tests. 

IMPLEMENTATION AND PUBLICATION 

OF RESULTS 

 

The results of the work have been 

implemented as a Proof of Concept (PoC) and 

have been presented at events such as 

MathWorks Automotive Conference 2024 [5], 

featured at the N-iX company booth; a 

MathWorks webinar titled “Energy 

Consumption Prediction for Electric Vehicles” 

[6]; and described in N-iX company 

publications [7]. 

 

THE AMPERE POC 

 

From Figure 7(a), the structure of the 

Ampere project is evident, which is built 

according to the concept described in the 

publication. In this Proof of Concept, the focus 

is on cooperation with the semi-realistic 

environment. To achieve this, Carla, 

GoogleMaps, Steering, and an Android Tablet 

(driver authorization, destination coordinates 

determination, communication of optimal trip 

data to the driver) were used. Communication 

protocols UDP and ProtoBAFs were employed 

for this purpose. 

Figure 7(b) shows the application as seen 

by the user.  

CONCLUSION 

 

This study details the development of an 

adaptive software component to predict energy 

consumption for electric vehicles on planned 

routes. It emphasizes a modular and scalable 

architecture, incorporating mathematical 

models to manage consumption levels. Key 

data sources such as route information, vehicle 

condition, and driver behavior form a 

comprehensive state vector for optimizing 

energy use. 

The implementation adheres to ISO 26262 

and A-SPICE 3.1 standards, using a model-

based approach with Simulink, and aligning 

with the V-Model for rigorous testing. The 

gradient search method adjusts consumption to 

minimize energy use while maximizing 

comfort, ensuring the vehicle completes its 

route efficiently. 

Components for environment virtualization 

and stub realization were developed using 

Simulink and third-party software, managing 

external solutions through the Instrument 

Control Toolbox and UDP sockets. Achieving 

real-time execution involved compiling the 

software product and running it as an 

application. 
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Fig. 7. The Ampere by N-iX. a - generalized view; b - user view 

 

This Proof of Concept has been showcased 

at industry events, demonstrating the feasibility 

of advanced predictive models for energy 

management in electric vehicles. Future work 

will focus on refining predictive models, 

exploring machine learning for improved 

accuracy, and integrating real-time data from 

connected vehicle technologies to dynamically 

optimize energy consumption. These efforts 

aim to enhance the efficiency, reliability, and 

user-friendliness of energy management 

systems, supporting wider adoption and 

sustainability in the transportation sector. 

By addressing these observations and 

incorporating the suggested revisions, the paper 

will improve in clarity, readability, and overall 

effectiveness. 
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Адаптивний програмний компонент для 

прогнозування енергоспоживання 

електромобіля на запланованому маршруті 

 

Дмитро Гуменний 
 

Анотація. У даній роботі представлено 

розробку адаптивного програмного компонента 

для прогнозування енергоспоживання 

електромобілів на запланованих маршрутах. Він 

включає концептуальну основу, архітектурний 

дизайн і модульну композицію програмного 

забезпечення, вводячи математичні моделі для 

управління споживанням енергії з модельним 

підходом до проектування для точних прогнозів 

і оптимізації. Важливість джерел даних, таких 

як інформація про маршрут, стан транспортного 

засобу та поведінка водія, підкреслюється для 

створення комплексного вектора стану для 

оптимізації енергії. 

Дотримуючись стандартів ISO 26262 і A-

SPICE 3.1, реалізація використовує модельний 

підхід із Simulink і узгоджується з V-моделлю 

для суворої перевірки. Методологія детально 

розподіляє маршрути на сегменти та оптимізує 

споживання енергії для кожного сегменту, 

враховуючи стиль водіння та умови 

навколишнього середовища. Метод градієнтного 

пошуку регулює споживання енергії, щоб 

мінімізувати споживання, максимізуючи 

комфорт і гарантуючи завершення маршруту. 

Це дослідження закладає основу для 

майбутніх досягнень у системах прогнозного 

керування енергією для електромобілів із 

потенційним застосуванням у реальному світі. 

Майбутня робота буде зосереджена на 

вдосконаленні прогнозних моделей, вивченні 

машинного навчання для підвищення точності 

та інтеграції даних у реальному часі з технологій 

підключених транспортних засобів для 

динамічної оптимізації. 

Ключові слова. Електромобілі, 

передбачення енергоспоживання, модельний 

дизайн, система управління енергією, 

оптимізація маршруту, поведінка водіння, 

адаптивне програмне забезпечення, ISO 26262, 

A-SPICE 3.1, градієнтний пошук, Simulink, 

вектор стану автомобіля, модульна архітектура, 

прогнозні моделі, машинне навчання , інтеграція 

даних у реальному часі, підключені технології 

транспортних засобів, керування акумулятором, 

оптимізація комфорту. 

 

 

 

 

 

 

 

 

 

 

 

 

 


